Liu Yuan-Tao, Zhang Le-Le, Jiang Zi-Ying, Tian Xian-Shu, Li Peng-Lin, Wu Pei-Huang, Du Wen-Ting, Yuan Bo-Yu, Xie Chu, Bu Guo-Long, Zhong Lan-Yi, Yang Yan-Lin, Li Ting, Zeng Mu-Sheng, Sun Cong
State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research Center for Cancer Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center Guangzhou China.
MedComm (2020). 2025 Jul 30;6(8):e70317. doi: 10.1002/mco2.70317. eCollection 2025 Aug.
Artificial intelligence (AI) is revolutionizing biotechnology by transforming the landscape of therapeutic development. Traditional drug discovery faces persistent challenges, including high attrition rates, billion-dollar costs, and timelines exceeding a decade. Recent advances in AI-particularly generative models such as generative adversarial networks, variational autoencoders, and diffusion models-have introduced data-driven, iterative workflows that dramatically accelerate and enhance pharmaceutical R&D. However, a comprehensive synthesis of how AI technologies reshape each key modality of drug discovery remains lacking. This review systematically examines AI-enabled breakthroughs across four major therapeutic platforms: small-molecule drug design, protein binder discovery, antibody engineering, and nanoparticle-based delivery systems. It highlights AI's ability to achieve >75% hit validation in virtual screening, design protein binders with sub-Ångström structural fidelity, enhancing antibody binding affinity to the picomolar range, and optimize nanoparticles to achieve over 85% functionalization efficiency. We further discuss the integration of high-throughput experimentation, closed-loop validation, and AI-guided optimization in expanding the druggable proteome and enabling precision medicine. By consolidating cross-domain advances, this review provides a roadmap for leveraging machine learning to overcome current biopharmaceutical bottlenecks and accelerate next-generation therapeutic innovation.
人工智能(AI)正在通过改变治疗开发的格局,给生物技术带来革命性变化。传统的药物研发面临着持续的挑战,包括高淘汰率、数十亿美元的成本以及超过十年的研发周期。人工智能领域的最新进展,特别是生成对抗网络、变分自编码器和扩散模型等生成式模型,引入了数据驱动的迭代工作流程,极大地加速和提升了药物研发进程。然而,目前仍缺乏对人工智能技术如何重塑药物研发各个关键模式的全面综合论述。本综述系统地考察了人工智能在四个主要治疗平台上所取得的突破:小分子药物设计、蛋白质结合剂发现、抗体工程以及基于纳米颗粒的递送系统。它强调了人工智能在虚拟筛选中实现>75%的命中验证、设计具有亚埃结构保真度的蛋白质结合剂、将抗体结合亲和力提高到皮摩尔范围以及优化纳米颗粒以实现超过85%的功能化效率等方面的能力。我们还讨论了高通量实验、闭环验证和人工智能引导的优化在扩展可成药蛋白质组和实现精准医学方面的整合。通过整合跨领域的进展,本综述提供了一个利用机器学习克服当前生物制药瓶颈并加速下一代治疗创新的路线图。