Suppr超能文献

基于光学方法和深度学习的肤色图生成的肤色分析。

Skin Tone Analysis Through Skin Tone Map Generation With Optical Approach and Deep Learning.

机构信息

Technology Development Team, lululab Inc., Seoul, Republic of Korea.

AI R&D center, lululab Inc., Seoul, Republic of Korea.

出版信息

Skin Res Technol. 2024 Oct;30(10):e70088. doi: 10.1111/srt.70088.

Abstract

BACKGROUND

Skin tone assessment is critical in both cosmetic and medical fields, yet traditional methods like the individual typology angle (ITA) have limitations, such as sensitivity to illuminants and insensitivity to skin redness.

METHODS

This study introduces an automated image-based method for skin tone mapping by applying optical approaches and deep learning. The method generates skin tone maps by leveraging the illuminant spectrum, segments the skin region from face images, and identifies the corresponding skin tone on the map. The method was evaluated by generating skin tone maps under three standard illuminants (D45, D65, and D85) and comparing the results with those obtained using ITA on skin tone simulation images.

RESULTS

The results showed that skin tone maps generated under the same lighting conditions as the image acquisition (D65) provided the highest accuracy, with a color difference of around 6, which is more than twice as small as those observed under other illuminants. The mapping positions also demonstrated a clear correlation with pigment levels. Compared to ITA, the proposed approach was particularly effective in distinguishing skin tones related to redness.

CONCLUSION

Despite the need to measure the illuminant spectrum and for further physiological validation, the proposed approach shows potential for enhancing skin tone assessment. Its ability to mitigate the effects of illuminants and distinguish between the two dominant pigments offers promising applications in both cosmetic and medical diagnostics.

摘要

背景

肤色评估在美容和医学领域都至关重要,但传统方法,如个体类型角度(ITA)存在局限性,例如对光源敏感而对皮肤发红不敏感。

方法

本研究通过应用光学方法和深度学习,提出了一种基于图像的自动肤色映射方法。该方法通过利用光源光谱生成肤色映射图,从面部图像中分割出皮肤区域,并在映射图上识别相应的肤色。该方法在三种标准光源(D45、D65 和 D85)下生成肤色映射图,并与 ITA 在肤色模拟图像上的结果进行比较,以此进行评估。

结果

结果表明,在与图像采集相同的照明条件(D65)下生成的肤色映射图具有最高的准确性,色差约为 6,这比在其他光源下观察到的色差小两倍多。映射位置也与色素水平有明显的相关性。与 ITA 相比,所提出的方法在区分与发红相关的肤色方面特别有效。

结论

尽管需要测量光源光谱并进行进一步的生理验证,但所提出的方法在增强肤色评估方面具有潜力。它能够减轻光源的影响并区分两种主要色素,为美容和医学诊断提供了有前景的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c03f/11452249/9acd9960f506/SRT-30-e70088-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验