AI R&D center, lululab Inc., 318 Dosan-daero, Gangnam-gu, Seoul, 06054, Republic of Korea.
Comput Biol Med. 2024 Aug;178:108741. doi: 10.1016/j.compbiomed.2024.108741. Epub 2024 Jun 15.
Deep learning in dermatology presents promising tools for automated diagnosis but faces challenges, including labor-intensive ground truth preparation and a primary focus on visually identifiable features. Spectrum-based approaches offer professional-level information like pigment distribution maps, but encounter practical limitations such as complex system requirements.
This study introduces a spectrum-based framework for training a deep learning model to generate melanin and hemoglobin distribution maps from skin images. This approach eliminates the need for manually prepared ground truth by synthesizing output maps into skin images for regression analysis. The framework is applied to acquire spectral data, create pigment distribution maps, and simulate pigment variations.
Our model generated reflectance spectra and spectral images that accurately reflect pigment absorption properties, outperforming spectral upsampling methods. It produced pigment distribution maps with correlation coefficients of 0.913 for melanin and 0.941 for hemoglobin compared to the VISIA system. Additionally, the model's simulated images of pigment variations exhibited a proportional correlation with adjustments made to pigment levels. These evaluations are based on pigment absorption properties, the Individual Typology Angle (ITA), and pigment indices.
The model produces pigment distribution maps comparable to those from specialized clinical equipment and simulated images with numerically adjusted pigment variations. This approach demonstrates significant promise for developing professional-level diagnostic tools for future clinical applications.
深度学习在皮肤科领域提供了有前景的自动化诊断工具,但面临一些挑战,包括劳动密集型的真实数据准备和主要关注视觉可识别特征。基于光谱的方法提供了像色素分布图这样的专业级信息,但遇到了复杂系统要求等实际限制。
本研究介绍了一种基于光谱的框架,用于训练深度学习模型,从皮肤图像中生成黑色素和血红蛋白分布图。该方法通过将输出图合成到皮肤图像中进行回归分析,从而消除了手动准备真实数据的需求。该框架用于获取光谱数据、创建色素分布图和模拟色素变化。
我们的模型生成的反射光谱和光谱图像准确反映了色素的吸收特性,优于光谱上采样方法。与 VISIA 系统相比,它生成的黑色素和血红蛋白的色素分布图的相关系数分别为 0.913 和 0.941。此外,模型模拟的色素变化图像与对色素水平进行的调整呈现出比例相关性。这些评估基于色素吸收特性、个体类型角(ITA)和色素指数。
该模型生成的色素分布图与专门的临床设备相当,并且模拟图像中的色素变化具有数值调整的相关性。这种方法为未来的临床应用开发专业级诊断工具提供了很大的潜力。