Suppr超能文献

定制天然稀有糖D-塔格糖和L-山梨糖以生产新型功能性碳水化合物。

Tailoring the natural rare sugars D-tagatose and L-sorbose to produce novel functional carbohydrates.

作者信息

Hernandez-Hernandez Oswaldo, Sabater Carlos, Calvete-Torre Inés, Doyagüez Elisa G, Muñoz-Labrador Ana M, Julio-Gonzalez Cristina, de Las Rivas Blanca, Muñoz Rosario, Ruiz Lorena, Margolles Abelardo, Mancheño José M, Moreno F Javier

机构信息

Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain.

Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain.

出版信息

NPJ Sci Food. 2024 Oct 4;8(1):74. doi: 10.1038/s41538-024-00320-8.

Abstract

This multidisciplinary study details the biosynthesis of novel non-digestible oligosaccharides derived from rare sugars, achieved through transfructosylation of D-tagatose and L-sorbose by levansucrase from Bacillus subtilis CECT 39 (SacB). The characterization of these carbohydrates using NMR and molecular docking was instrumental in elucidating the catalytic mechanism and substrate preference of SacB. Tagatose-based oligosaccharides were higher in abundance than L-sorbose-based oligosaccharides, with the most representative structures being: β-D-Fru-(2→6)-β-D-Fru-(2→1)-D-Tag and β-D-Fru-(2→1)-D-Tag. In vitro studies demonstrated the resistance of tagatose-based oligosaccharides to intestinal digestion and their prebiotic properties, providing insights into their structure-function relationship. β-D-Fru-(2→1)-D-Tag was the most resistant structure to small-intestinal digestion after three hours (99.8% remained unaltered). This disaccharide and the commercial FOS clustered in similar branches, indicating comparable modulatory properties on human fecal microbiota, and exerted a higher bifidogenic effect than unmodified tagatose. The bioconversion of selected rare sugars into β-fructosylated species with a higher degree of polymerization emerges as an efficient strategy to enhance the bioavailability of these carbohydrates and promote their interaction with the gut microbiota. These findings open up new opportunities for tailoring natural rare sugars, like D-tagatose and L-sorbose, to produce novel biosynthesized carbohydrates with functional and structural properties desirable for use as emerging prebiotics and low-calorie sweeteners.

摘要

这项多学科研究详细阐述了源自稀有糖的新型非消化性低聚糖的生物合成过程,该过程是通过枯草芽孢杆菌CECT 39(SacB)的果聚糖蔗糖酶对D-塔格糖和L-山梨糖进行转果糖基化反应实现的。利用核磁共振(NMR)和分子对接对这些碳水化合物进行表征,有助于阐明SacB的催化机制和底物偏好。基于塔格糖的低聚糖比基于L-山梨糖的低聚糖丰度更高,最具代表性的结构为:β-D-果糖-(2→6)-β-D-果糖-(2→1)-D-塔格糖和β-D-果糖-(2→1)-D-塔格糖。体外研究表明,基于塔格糖的低聚糖对肠道消化具有抗性,并具有益生元特性,这为其结构-功能关系提供了见解。β-D-果糖-(2→1)-D-塔格糖是三小时后对小肠消化最具抗性的结构(99.8%保持不变)。这种二糖和商业低聚果糖聚集在相似的分支中,表明对人类粪便微生物群具有可比的调节特性,并且比未修饰的塔格糖具有更高的双歧杆菌增殖效应。将选定的稀有糖生物转化为具有更高聚合度的β-果糖基化物种,是提高这些碳水化合物生物利用度并促进其与肠道微生物群相互作用的有效策略。这些发现为定制天然稀有糖(如D-塔格糖和L-山梨糖)开辟了新机会,以生产具有功能性和结构性特性的新型生物合成碳水化合物,用作新型益生元和低热量甜味剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e54/11452612/c0a5e2053672/41538_2024_320_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验