Tellez-Cruz Miriam M, Escorihuela Jorge, Solorza-Feria Omar, Compañ Vicente
Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico.
Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
Polymers (Basel). 2021 Sep 10;13(18):3064. doi: 10.3390/polym13183064.
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
将可再生电力和碳氧化物电化学催化转化为化学燃料的研究引起了不同研究人员的广泛关注。该过程的主要作用在于通过封闭的技术碳循环缓解全球能源危机,在这个循环中,诸如氢气等化学燃料被储存起来,并通过燃料电池中的电化学反应过程重新转化为电能。科学界致力于开发高性能聚合物膜以及具有高催化活性和稳定性的纳米材料,以减少作为阴极应用于质子交换膜燃料电池(PEMFC)堆的铂族金属,使其能够在低温和中温下工作。设计新型导电膜和纳米颗粒(NP)至关重要,因为它们的形态直接影响其催化性能。纳米颗粒的形态,如立方体、八面体、二十面体、双锥体、片状和多面体等,在催化应用中得到了广泛研究。围绕高催化活性的最新进展集中在稳定剂及其对纳米材料合成的潜在影响上,以诱导纳米颗粒形态的变化。