Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
Sci Rep. 2024 Oct 4;14(1):23057. doi: 10.1038/s41598-024-73114-3.
Among biomimetic strategies shaping engineering designs, molecularly imprinted polymer (MIP) technology stands out, involving chemically synthesised receptors emulating natural antigen-antibody interactions. These versatile 'designer polymers' with remarkable stability and low cost, are pivotal for in vitro diagnostics. Amid the recent global health crisis, we probed MIPs' potential to capture SARS-CoV-2 virions. Large biotemplates complicate MIP design, influencing generated binding site specificity. To precisely structure recognition sites within polymers, we innovated an epitope imprinting method supplemented by in silico polymerization component screening. A viral surface Spike protein informed epitope selection was targeted for MIP development. A novel multi-monomer docking approach (MMSD) was employed to simulate classical receptor-ligand interactions, mimicking binding reinforcement across multiple amino acids. Around 40 monomer combinations were docked to the epitope sequence and top performers experimentally validated via rapid fluorescence binding assays. Notably, high imprinting factor polymers correlated with MMSD predictions, promising rational MIP design applicable to diverse viral pathologies.
在仿生策略中,分子印迹聚合物(MIP)技术脱颖而出,涉及化学合成的受体模拟天然抗原-抗体相互作用。这些多功能的“设计聚合物”具有出色的稳定性和低成本,是体外诊断的关键。在最近的全球健康危机中,我们探讨了 MIP 捕获 SARS-CoV-2 病毒粒子的潜力。大的生物模板使 MIP 的设计变得复杂,影响了生成的结合位点特异性。为了在聚合物内精确构建识别位点,我们创新了一种表位印迹方法,并辅以计算机聚合成分筛选。针对 MIP 的开发,选择了病毒表面 Spike 蛋白的表位。采用了一种新的多单体对接方法(MMSD)来模拟经典的受体-配体相互作用,模拟多个氨基酸的结合增强。围绕着表位序列对接了大约 40 种单体组合,并通过快速荧光结合测定实验验证了表现最佳的单体组合。值得注意的是,高印迹因子聚合物与 MMSD 预测相关,有望实现适用于多种病毒病理学的合理 MIP 设计。