Padoan Andrea, Cadamuro Janne, Frans Glynis, Cabitza Federico, Tolios Alexander, De Bruyne Sander, van Doorn William, Elias Johannes, Debeljak Zeljko, Perez Salomon Martin, Özdemir Habib, Carobene Anna
Department of Medicine (DIMED), University of Padova and Laboratory Medicine Unity, University Hospital of Padova, Padova, Italy.
Department of Laboratory Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.
Clin Chem Lab Med. 2024 Oct 7;63(4):684-691. doi: 10.1515/cclm-2024-0971. Print 2025 Mar 26.
In the last decades, clinical laboratories have significantly advanced their technological capabilities, through the use of interconnected systems and advanced software. Laboratory Information Systems (LIS), introduced in the 1970s, have transformed into sophisticated information technology (IT) components that integrate with various digital tools, enhancing data retrieval and exchange. However, the current capabilities of LIS are not sufficient to rapidly save the extensive data, generated during the total testing process (TTP), beyond just test results. This opinion paper discusses qualitative types of TTP data, proposing how to divide laboratory-generated information into two categories, namely metadata and peridata. Being both metadata and peridata information derived from the testing process, it is proposed that the first is useful to describe the characteristics of data, while the second is for interpretation of test results. Together with standardizing preanalytical coding, the subdivision of laboratory-generated information into metadata or peridata might enhance ML studies, also by facilitating the adherence of laboratory-derived data to the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles. Finally, integrating metadata and peridata into LIS can improve data usability, support clinical utility, and advance AI model development in healthcare, emphasizing the need for standardized data management practices.
在过去几十年中,临床实验室通过使用互联系统和先进软件,极大地提升了其技术能力。20世纪70年代引入的实验室信息系统(LIS)已转变为复杂的信息技术(IT)组件,可与各种数字工具集成,增强数据检索和交换。然而,LIS目前的功能尚不足以快速保存总检测过程(TTP)中产生的大量数据,而不仅仅是检测结果。本观点论文讨论了TTP数据的定性类型,提出了如何将实验室生成的信息分为两类,即元数据和周边数据。由于元数据和周边数据均源自检测过程,建议前者用于描述数据特征,而后者用于解释检测结果。除了标准化分析前编码外,将实验室生成的信息细分为元数据或周边数据可能会增强机器学习研究,也有助于使实验室衍生数据符合可查找、可访问、可互操作和可重用(FAIR)原则。最后,将元数据和周边数据集成到LIS中可以提高数据可用性,支持临床应用,并推动医疗保健领域的人工智能模型开发,强调了标准化数据管理实践的必要性。