Suppr超能文献

优化热解合成及物理化学特性表征:揭示一种可持续的用于环境修复应用的枣椰种子生物炭吸附剂。

Optimized pyrolytic synthesis and physicochemical characterization of date palm seed biochar: unveiling a sustainable adsorbent for environmental remediation applications.

机构信息

Matter Science Department, University Mohamed Khider, 07000, Biskra, Algeria.

Department of Chemical Engineering Materials Environment & UdR INSTM, Sapienza-Università Di Roma, 00184, Rome, Italy.

出版信息

Environ Sci Pollut Res Int. 2024 Oct;31(50):60065-60079. doi: 10.1007/s11356-024-35218-1. Epub 2024 Oct 5.

Abstract

This study focuses on the optimization and comprehensive characterization of biochar synthesized from date palm seeds (DPS), a prevalent agricultural waste in arid regions. Using response surface methodology (RSM) with a central composite design (CCD), we optimized the pyrolysis process by investigating the effects of time (1-3 h) and temperature (600-900 °C) on critical properties such as specific surface area, pore volume, and yield. The optimized biochar, produced at 828 °C for 1.7 h, demonstrated a high specific surface area of 654.8 m/g and well-developed microporosity. Characterization techniques, including XRD, FTIR, SEM-EDS, and BET analyses, revealed an amorphous carbon structure with graphitic domains, diverse surface functionalities, and a heterogeneous porous microstructure. The biochar's point of zero charge at pH 7.58 indicates its potential for selective adsorption of charged contaminants. The close agreement between RSM-predicted and experimental values for specific surface area (652.1 m/g vs. 654.8 m/g) and micropore volume (0.191 cm/g vs. 0.190 cm/g) validates the effectiveness of the model in optimizing biochar properties. This research highlights the potential of DPS-derived biochar as a sustainable adsorbent for environmental remediation, opening avenues for valorizing agricultural wastes and contributing to circular economy principles.

摘要

本研究聚焦于从枣椰树种子(DPS)中合成生物炭的优化和综合特性,DPS 是干旱地区普遍存在的农业废弃物。我们采用中心复合设计(CCD)的响应面法(RSM)对热解过程进行了优化,考察了时间(1-3 小时)和温度(600-900°C)对关键特性(如比表面积、孔体积和产率)的影响。在 828°C 下 1.7 小时的优化条件下,得到的生物炭具有高比表面积(654.8 m/g)和发达的微孔结构。XRD、FTIR、SEM-EDS 和 BET 分析等表征技术揭示了其无定形碳结构中存在石墨化畴、多样的表面官能团和不均匀的多孔微观结构。在 pH 值为 7.58 时,生物炭的零电荷点表明其具有选择性吸附带电污染物的潜力。比表面积(652.1 m/g 对 654.8 m/g)和微孔体积(0.191 cm/g 对 0.190 cm/g)的 RSM 预测值与实验值之间的高度吻合验证了模型在优化生物炭性能方面的有效性。这项研究突出了 DPS 衍生生物炭作为环境修复可持续吸附剂的潜力,为农业废弃物的增值利用开辟了道路,符合循环经济原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验