Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
Environ Geochem Health. 2019 Aug;41(4):1687-1704. doi: 10.1007/s10653-017-9947-0. Epub 2017 Mar 23.
Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R) of the materials, which speculated high degradability of biomass (R < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R < 0.7) and high recalcitrant nature of silica composited biochars (R > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.
通过机械化学处理,从椰枣废料生物炭和硅或沸石合成了工程化的有机-矿物复合材料。椰枣树叶柄(叶)废料生物质先用硅或沸石矿物进行球磨和超声处理,然后在 600°C 下进行热解。使用 X 射线衍射、热重-差热分析(TG-DTA)、傅里叶变换红外、扫描电子显微镜分析和比表面积和孔隙率分析仪对有机-矿物复合材料和原始材料进行了表征,以研究物理化学和结构特性的变化。与源自未研磨椰枣生物质的复合材料相比,球磨增加了生物炭复合材料的表面积,而降低了结晶度指数和有效粒径。硅复合生物炭位于范克里夫图中的原点附近,表明 H/C 和 O/C 摩尔比最低,因此与其他生物炭相比,芳香度更高,极性更低。TGA 热图表明硅复合生物炭具有最高的热稳定性。使用灰分和水分校正的 TGA 热图计算了材料的抗降解指数(R),推测生物质的高降解性(R<0.4)、生物炭和沸石复合生物炭的最小降解性(0.5<R<0.7)和硅复合生物炭的高抗降解性(R>0.7)。硅复合生物炭表现出最高的碳封存潜力(64.17-95.59%),高于其他生物炭。硅复合生物炭的高抗降解性和碳封存潜力可能归因于硅-生物炭复合物中结构排列的变化。通过 Si-C 键将生物炭颗粒封装在无定形硅中可能阻止了热降解,从而提高了硅复合生物炭的抗降解潜力。