Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States.
Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States; Department of Neurosciences, University of California San Diego, San Diego, CA, United States.
Seizure. 2024 Nov;122:64-70. doi: 10.1016/j.seizure.2024.09.024. Epub 2024 Sep 30.
The purpose of this study was to evaluate the performance and generalizability of an automated, interpretable surface-based MRI classifier for the detection of focal cortical dysplasia.
This was a retrospective cohort incorporating MRIs from the epilepsy surgery (FCD and MRI-negative) and neuroimaging (healthy controls) databases at Children's National Hospital (CNH), and a publicly-available FCD Type II dataset from Bonn, Germany. Clinical characteristics and outcomes were abstracted from patient records and/or existing databases. Subjects were included if they had 3T epilepsy-protocol MRI. Manually-segmented FCD masks were compared to the automated masks generated by the Multi-centre Epilepsy Lesion Detection (MELD) FCD detection algorithm. Sensitivity/specificity were calculated.
From CNH, 39 FCD pharmacoresistant epilepsy (PRE) patients, 19 healthy controls, and 19 MRI-negative patients were included. From Bonn, 85 FCD Type II were included, of which 68 passed preprocessing. MELD had varying performance (sensitivity) in these datasets: CNH FCD-PRE (54 %); Bonn (68 %); MRI-negative (44 %). In multivariate regression, FCD Type IIB pathology predicted higher chance of MELD automated lesion detection. All four patients who underwent resection/ablation of MELD-identified clusters achieved Engel I outcome.
We validate the performance of MELD automated, interpretable FCD classifier in a diverse pediatric cohort with FCD-PRE. We also demonstrate the classifier has relatively good performance in an independent FCD Type II cohort with pediatric-onset epilepsy, as well as simulated real-world value in a pediatric population with MRI-negative PRE.
本研究旨在评估一种自动、可解释的基于表面的 MRI 分类器在检测局灶性皮质发育不良(FCD)中的性能和泛化能力。
本研究为回顾性队列研究,纳入了来自儿童国家医院(CNH)癫痫手术(FCD 和 MRI 阴性)和神经影像学(健康对照)数据库的 MRI,以及来自德国波恩的公开 FCD Type II 数据集。从患者记录和/或现有数据库中提取临床特征和结局。如果患者有 3T 癫痫协议 MRI,则纳入研究。将手动分割的 FCD 掩模与多中心癫痫病变检测(MELD)FCD 检测算法生成的自动掩模进行比较。计算敏感性/特异性。
从 CNH 纳入了 39 例 FCD 药物难治性癫痫(PRE)患者、19 名健康对照者和 19 名 MRI 阴性患者。从波恩纳入了 85 例 FCD Type II 患者,其中 68 例通过预处理。MELD 在这些数据集的表现(敏感性)各不相同:CNH FCD-PRE(54%);波恩(68%);MRI 阴性(44%)。在多变量回归中,FCD Type IIB 病理学预示着 MELD 自动病变检测的可能性更高。所有 4 例接受 MELD 识别的病灶切除/消融的患者均获得了 Engel I 级结局。
我们在一个具有 FCD-PRE 的不同儿科队列中验证了 MELD 自动、可解释的 FCD 分类器的性能。我们还证明了该分类器在具有儿科起病癫痫的独立 FCD Type II 队列中具有相对较好的性能,并且在具有 MRI 阴性 PRE 的儿科人群中模拟了真实世界的价值。