Suppr超能文献

II型局灶性皮质发育不良的自动检测与定位:优化检测框架(ODF)

Automated Detection and Localization of Focal Cortical Dysplasia Type II: The Optimized Detection Framework (ODF).

作者信息

Ganji Zohreh, Hakkak Mohsen Aghaee, Zare Hoda

机构信息

Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Epilepsy Monitoring Unit, Research and Education Department, Razavi Hospital, Mashhad, Iran.

出版信息

World Neurosurg. 2025 Jun;198:124009. doi: 10.1016/j.wneu.2025.124009. Epub 2025 Apr 25.

Abstract

OBJECTIVE

Focal cortical dysplasia (FCD) type II is a significant contributor to drug-resistant epilepsy. The accurate identification of lesions via magnetic resonance imaging (MRI) presents considerable challenges, often impeding effective surgical planning. This study aims to develop an automated detection framework, the optimized detection framework (ODF), to enhance the diagnosis of FCD type II.

METHODS

The ODF merges surface-based morphometry with machine learning techniques. A dataset comprising 58 MRI scans (30 FCD type II patients, 28 controls) underwent preprocessing (bias field correction, skull stripping), processing (segmentation), and feature extraction of both morphological and intensity-based metrics. Three classification algorithms-artificial neural network, decision tree, and support vector machine-were evaluated for their effectiveness in lesion detection and localization.

RESULTS

The artificial neural network classifier, part of the ODF, exhibited superior performance with an overall accuracy of 98.6%, attaining sensitivity of 97.5% and specificity of 100% for lesion detection. The localization accuracy for lesions was 84.2% for hemispheric and 77.3% for lobar classification.

CONCLUSIONS

The ODF represents a significant advancement in the automated detection and localization of FCD type II lesions. Its high precision and efficiency support presurgical evaluations, particularly in MRI-negative cases, and may optimize epilepsy management. Prospective integration with intraoperative navigation systems could enhance surgical outcomes.

摘要

目的

II型局灶性皮质发育不良(FCD)是耐药性癫痫的一个重要成因。通过磁共振成像(MRI)准确识别病变存在相当大的挑战,常常阻碍有效的手术规划。本研究旨在开发一种自动检测框架,即优化检测框架(ODF),以加强对II型FCD的诊断。

方法

ODF将基于表面的形态测量学与机器学习技术相结合。一个包含58例MRI扫描(30例II型FCD患者,28例对照)的数据集经过了预处理(偏置场校正、去颅骨)、处理(分割)以及形态学和基于强度指标的特征提取。评估了三种分类算法——人工神经网络、决策树和支持向量机——在病变检测和定位方面的有效性。

结果

作为ODF一部分的人工神经网络分类器表现出卓越性能,总体准确率为98.6%,在病变检测方面灵敏度达到97.5%,特异性为100%。病变的半球定位准确率为84.2%,叶分类定位准确率为77.3%。

结论

ODF代表了II型FCD病变自动检测和定位方面的重大进展。其高精度和高效率有助于术前评估,尤其是在MRI阴性的病例中,并且可能优化癫痫治疗管理。与术中导航系统的前瞻性整合可能会提高手术效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验