Department of Biochemistry I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
Department of Biochemistry I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
Biochem Biophys Res Commun. 2024 Nov 19;734:150776. doi: 10.1016/j.bbrc.2024.150776. Epub 2024 Oct 2.
The regulation of intracellular reactive oxygen species (ROS) levels is important for maintaining the self-renewal ability of neural stem/progenitor cells (NSCs). In this study, we demonstrate that 53BP1, a DNA damage response factor known to facilitate the repair of DNA double-strand breaks, supports the maintenance of NSC stemness. ReNcell VM human NSCs with depleted 53BP1 exhibited reduced self-renewal ability compared with control NSCs, as revealed by a decrease in neurosphere size and an increase in differentiation into neural or glial cells within an NSC culture. Furthermore, 53BP1 depletion elevated cellular ROS levels, accompanied by mitochondrial abnormalities. The reduced self-renewal ability and elevated ROS levels in 53BP1-deficient NSCs were restored with the treatment of a radical scavenger, N-acetyl-l-cysteine. In addition, we investigated the functional relationship in the NSC self-renewal ability between 53BP1 and ataxia-telangiectasia mutated (ATM) or forkhead box O3a (FOXO3a), factors required for mitochondrial homeostasis, and the maintenance of NSC stemness. We found that ATM inhibition or FOXO3a deficiency, in addition to 53BP1 deficiency, did not induce further NSC stemness impairment. Collectively, our findings show that 53BP1, by cooperatively functioning with ATM and FOXO3a, supports the maintenance of NSC stemness by modulating mitochondrial homeostasis.
细胞内活性氧(ROS)水平的调节对于维持神经干细胞/祖细胞(NSCs)的自我更新能力非常重要。在本研究中,我们证明了 53BP1,一种已知有助于修复 DNA 双链断裂的 DNA 损伤反应因子,支持 NSC 干性的维持。与对照 NSCs 相比,耗尽 53BP1 的 ReNcell VM 人 NSCs 表现出自我更新能力降低,这表现在神经球大小减小,以及 NSC 培养中向神经或神经胶质细胞分化增加。此外,53BP1 耗竭增加了细胞内 ROS 水平,伴有线粒体异常。用自由基清除剂 N-乙酰-l-半胱氨酸处理可恢复 53BP1 缺陷型 NSCs 中的自我更新能力降低和 ROS 水平升高。此外,我们研究了 53BP1 与共济失调毛细血管扩张突变(ATM)或叉头框 O3a(FOXO3a)之间在 NSC 自我更新能力中的功能关系,这两个因子是线粒体动态平衡和 NSC 干性维持所必需的。我们发现,除了 53BP1 缺陷外,ATM 抑制或 FOXO3a 缺陷也不会导致 NSC 干性进一步受损。总之,我们的研究结果表明,53BP1 通过与 ATM 和 FOXO3a 协同作用,通过调节线粒体动态平衡来支持 NSC 干性的维持。