Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA.
Departments of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08903, USA.
Redox Biol. 2024 Nov;77:103378. doi: 10.1016/j.redox.2024.103378. Epub 2024 Oct 1.
Alternative oxidase (AOX) is an enzyme that transfers electrons from reduced quinone directly to oxygen without proton translocation. When AOX from Ciona intestinalis is xenotopically expressed in mice, it can substitute the combined electron-transferring activity of mitochondrial complexes III/IV. Here, we used brain mitochondria from AOX-expressing mice with such a chimeric respiratory chain to study respiratory control bioenergetic mechanisms. AOX expression did not compromise the function of the mammalian respiratory chain at physiological conditions, however the complex IV inhibitor cyanide only partially blocked respiration by AOX-containing mitochondria. The relative fraction of cyanide-insensitive respiration increased at lower temperatures, indicative of a temperature-controlled attenuation of mammalian respiratory enzyme activity. As AOX does not translocate protons, the mitochondrial transmembrane potential in AOX-containing mitochondria was more sensitive to cyanide during succinate oxidation than during malate/pyruvate-supported respiration. High concentrations of cyanide fully collapsed membrane potential during oxidation of either succinate or glycerol 3-phosphate, but not during malate/pyruvate-supported respiration. This confirms AOX's electroneutral redox activity and indicates differences in the proton-translocating capacity of dehydrogenases upstream of the ubiquinone pool. Our respiration data refutes previous proposals for quinone partitioning within the supercomplexes of the respiratory chain, instead supporting the concept of a single homogeneous, freely diffusing quinone pool. Respiration with either succinate or glycerol 3-phosphate promotes reverse electron transfer (RET) towards complex I. AOX expression significantly decreased RET-induced ROS generation, with the effect more pronounced at low temperatures. Inhibitor-sensitivity analysis showed that the AOX-induced decrease in HO release is due to the lower contribution of complex I to net ROS production during RET. Overall, our findings provide new insights into the role of temperature as a mechanism to control respiration and highlight the utility of AOX as a genetic tool to characterize both the distinct pathways of oxygen reduction and the role of redox control in RET.
交替氧化酶(AOX)是一种将还原的醌直接从电子传递给氧而不进行质子转运的酶。当来自文昌鱼的 AOX 异源表达在小鼠中时,它可以替代线粒体复合物 III/IV 的联合电子传递活性。在这里,我们使用具有这种嵌合呼吸链的 AOX 表达小鼠的脑线粒体来研究呼吸控制生物能学机制。AOX 的表达在生理条件下并不损害哺乳动物呼吸链的功能,但是复合物 IV 抑制剂氰化物仅部分阻断含 AOX 的线粒体的呼吸。在较低温度下,氰化物不敏感呼吸的相对分数增加,表明哺乳动物呼吸酶活性受到温度控制的衰减。由于 AOX 不转运质子,因此在线粒体呼吸链中含有 AOX 的线粒体中,在琥珀酸氧化期间,氰化物对跨膜电位的影响比在苹果酸/丙酮酸支持的呼吸期间更为敏感。氰化物的高浓度在琥珀酸或甘油 3-磷酸氧化期间完全使膜电位崩溃,但在苹果酸/丙酮酸支持的呼吸期间则不会。这证实了 AOX 的电中性氧化还原活性,并表明在泛醌池上游的脱氢酶的质子转运能力存在差异。我们的呼吸数据反驳了先前关于醌在呼吸链的超级复合物内分配的建议,而是支持了单个均质、自由扩散的醌池的概念。无论是琥珀酸还是甘油 3-磷酸的呼吸都促进了向复合物 I 的反向电子转移(RET)。AOX 的表达显著降低了 RET 诱导的 ROS 生成,其效果在低温下更为明显。抑制剂敏感性分析表明,AOX 诱导的 HO 释放减少是由于在 RET 过程中复合物 I 对净 ROS 产生的贡献降低。总的来说,我们的研究结果为温度作为控制呼吸的机制提供了新的见解,并强调了 AOX 作为一种遗传工具的实用性,用于描述氧气还原的不同途径以及氧化还原控制在 RET 中的作用。