Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
Faculty of General Medicine, Pirogov Russian National Research Medical University, Moscow, Russia.
Eur J Pharmacol. 2022 Sep 15;931:175177. doi: 10.1016/j.ejphar.2022.175177. Epub 2022 Aug 5.
Metformin is an antihyperglycemic drug which is being examined as a repurposed treatment for cardiovascular disease for individuals without diabetes mellitus. Despite evidence that mitochondrial respiratory complex I is a target of metformin and inhibition of the enzyme is one of the mechanisms of its therapeutic actions, no systematic studies of the metformin effect on intact mitochondria have been reported. In the presented paper, we described the effect of metformin on respiration and ROS release by intact mitochondria from the liver and brain. By comparing the effect of metformin on mitochondria oxidizing different substrates, we found direct inhibition of respiration and stimulation of ROS release when complex I-based respiration is measured (forward electron transfer). Metformin had no effect on respiration rates but inhibited ROS release when mitochondria oxidize succinate or glycerol 3-phosphate in conditions of reverse electron transfer in complex I. In addition, we found that metformin is a weak effector of the active/deactive (A/D) transition of mitochondrial complex I. At high concentrations, metformin increases the rate of spontaneous deactivation of complex I (A→D transition). The results obtained are consistent with the concept of metformin inhibition of complex I and that it can either stimulate or inhibit mitochondrial ROS production depending on the preferential respiratory substrate. This is relevant during the ischemia/reperfusion process, to counteract the ROS overproduction, which is induced by a high level of reverse electron transfer substrates is generated after an ischemic event.
二甲双胍是一种抗高血糖药物,目前正在研究将其作为一种针对无糖尿病个体的心血管疾病的重新定位治疗方法。尽管有证据表明,线粒体呼吸复合物 I 是二甲双胍的靶点,并且抑制该酶是其治疗作用的机制之一,但尚未有关于二甲双胍对完整线粒体影响的系统研究报道。在本文中,我们描述了二甲双胍对来自肝脏和大脑的完整线粒体呼吸和 ROS 释放的影响。通过比较二甲双胍对氧化不同底物的线粒体的影响,我们发现当测量基于复合物 I 的呼吸时,直接抑制呼吸并刺激 ROS 释放(正向电子传递)。当线粒体在复合物 I 中的反向电子传递条件下氧化琥珀酸或甘油 3-磷酸时,二甲双胍对呼吸速率没有影响,但抑制了 ROS 的释放。此外,我们发现二甲双胍是线粒体复合物 I 的活性/失活(A/D)转换的弱效应物。在高浓度下,二甲双胍会增加复合物 I 自发失活的速率(A→D 转换)。所得结果与二甲双胍抑制复合物 I 的概念一致,即它可以根据优先呼吸底物刺激或抑制线粒体 ROS 的产生。这在缺血/再灌注过程中很重要,可以抵消由于缺血事件后生成的大量反向电子传递底物而导致的 ROS 过度产生。