Suppr超能文献

编辑评论:现成的大语言模型质量不足以提供医疗建议,而定制大语言模型则能产生高质量的建议。

Editorial Commentary: Off-the-Shelf Large Language Models Are of Insufficient Quality to Provide Medical Treatment Recommendations, While Customization of Large Language Models Results in Quality Recommendations.

作者信息

Ramkumar Prem N, Masotto Andrew F, Woo Joshua J

机构信息

Commons Clinic (A.F.M., J.J.W.); The Warren Alpert Medical School of Brown University (J.J.W.).

出版信息

Arthroscopy. 2025 Feb;41(2):276-278. doi: 10.1016/j.arthro.2024.09.047. Epub 2024 Oct 3.

Abstract

The content accuracy of off-the-shelf large language models (LLMs) mirrors the content accuracy of the unregulated Internet from which these generative artificial intelligence models are supplied. With error rates approximating 30% in terms of treatment recommendations for the management of common musculoskeletal conditions, seeking expert opinion remains paramount. However, custom LLMs represent an excellent opportunity to infuse niche, bespoke expertise from the many specialties and subspecialties within medicine. Methods of customizing these generative models broadly fall under the categories of prompt engineering; "retrieval-augmented generation" prioritizing retrieval of relevant information from a specific domain of data; "fine-tuning" of a basic pretrained model into one that is refined for health care-related vernacular and acronyms; and "agentic augmentation" including software that breaks down complex tasks into smaller ones, recruiting multiple LLMs (with or without retrieval-augmented generation), optimizing the output, internally deciding whether the response is appropriate or sufficient, and even passing on an unmet outcome to a human for supervision ("phone a friend"). Custom LLMs offer physicians and their associated organizations the rare opportunity to regain control of our profession by re-establishing authority in our increasingly digital landscape.

摘要

现成的大语言模型(LLMs)的内容准确性反映了这些生成式人工智能模型所基于的无监管互联网的内容准确性。在常见肌肉骨骼疾病管理的治疗建议方面,错误率接近30%,因此寻求专家意见仍然至关重要。然而,定制大语言模型是一个绝佳机会,可以融入医学众多专业和亚专业领域的细分、定制化专业知识。定制这些生成式模型的方法大致可分为以下几类:提示工程;“检索增强生成”,即优先从特定数据领域检索相关信息;将基本的预训练模型“微调”为针对医疗保健相关术语和首字母缩略词进行优化的模型;以及“智能体增强”,包括将复杂任务分解为较小任务的软件,调用多个大语言模型(有无检索增强生成均可),优化输出,内部判断响应是否合适或充分,甚至将未解决的结果传递给人类进行监督(“求助热线”)。定制大语言模型为医生及其相关组织提供了一个难得的机会,通过在日益数字化的环境中重新确立权威来重新掌控我们的职业。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验