Suppr超能文献

分相颗粒污泥与膜曝气生物膜反应器耦合实现高效自养脱氮。

Partitioned granular sludge coupling with membrane-aerated biofilm reactor for efficient autotrophic nitrogen removal.

机构信息

Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China.

SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China.

出版信息

Bioresour Technol. 2024 Dec;414:131570. doi: 10.1016/j.biortech.2024.131570. Epub 2024 Oct 3.

Abstract

The partial nitritation-anammox process based on a membrane-aerated biofilm reactor (MABR) faces several challenges, such as difficulty in suppressing nitrite-oxidizing bacteria (NOB), excessive effluent nitrate, and ineffective synergy between denitrification and anammox bacteria. Therefore, a novel partitioned granular sludge coupling with MABR (G-MABR) was constructed. The chemical oxygen demand (COD) and nitrogen removal efficiency were 88.8 ± 1.8 %-92.6 ± 1.2 % and 88.8 ± 1.5 %-93.6 ± 0.7 %, respectively. The COD was mainly lowered in the lower granular sludge-zone, while nitrogen was removed in the upper MABR-zone. NOB was significantly suppressed in the MABR-zone due to competition for substrate with denitrifying bacteria and anammox bacteria. This partitioned configuration reduced the C/N ratio in the MABR-zone, thus facilitating autotrophic nitrogen removal. Both partial nitrification and denitrification provided nitrite for anammox bacteria in granular sludge, whereas partial nitrification mainly supplied nitrite to the anammox bacteria in membrane biofilms.

摘要

基于膜曝气生物膜反应器(MABR)的部分亚硝化-厌氧氨氧化工艺面临着一些挑战,例如难以抑制亚硝酸盐氧化菌(NOB)、出水中硝酸盐过多以及反硝化菌和厌氧氨氧化菌之间协同作用不佳等问题。因此,构建了一种新型分区颗粒污泥耦合 MABR(G-MABR)。该工艺的 COD 和氮去除效率分别为 88.8±1.8%-92.6±1.2%和 88.8±1.5%-93.6±0.7%。COD 主要在下部颗粒污泥区降低,而氮则在 MABR 区去除。由于与反硝化菌和厌氧氨氧化菌竞争基质,NOB 在 MABR 区受到明显抑制。这种分区结构降低了 MABR 区的 C/N 比,从而有利于自养脱氮。部分硝化和反硝化均为颗粒污泥中的厌氧氨氧化菌提供了亚硝酸盐,而部分硝化主要为膜生物膜中的厌氧氨氧化菌提供了亚硝酸盐。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验