Department of Mechanical Engineering, Stanford University, Stanford, California, United States.
Department of Mechanical Engineering, Stanford University, Stanford, California, United States.
Acta Biomater. 2024 Nov;189:461-477. doi: 10.1016/j.actbio.2024.09.051. Epub 2024 Oct 3.
Textile fabrics have unique mechanical properties, which make them ideal candidates for many engineering and medical applications: They are initially flexible, nonlinearly stiffening, and ultra-anisotropic. Various studies have characterized the response of textile structures to mechanical loading; yet, our understanding of their exceptional properties and functions remains incomplete. Here we integrate biaxial testing and constitutive neural networks to automatically discover the best model and parameters to characterize warp knitted polypropylene fabrics. We use experiments from different mounting orientations, and discover interpretable anisotropic models that perform well during both training and testing. Our study shows that constitutive models for warp knitted fabrics are highly sensitive to an accurate representation of the textile microstructure, and that models with three microstructural directions outperform classical orthotropic models with only two in-plane directions. Strikingly, out of 2=16,384 possible combinations of terms, we consistently discover models with two exponential linear fourth invariant terms that inherently capture the initial flexibility of the virgin mesh and the pronounced nonlinear stiffening as the loops of the mesh tighten. We anticipate that the tools we have developed and prototyped here will generalize naturally to other textile fabrics-woven or knitted, weft knit or warp knit, polymeric or metallic-and, ultimately, will enable the robust discovery of anisotropic constitutive models for a wide variety of textile structures. Beyond discovering constitutive models, we envision to exploit automated model discovery as a novel strategy for the generative material design of wearable devices, stretchable electronics, and smart fabrics, as programmable textile metamaterials with tunable properties and functions. Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANN. STATEMENT OF SIGNIFICANCE: Textile structures are rapidly gaining popularity in many biomedical applications including tissue engineering, wound healing, and surgical repair. A precise understanding of their unique mechanical properties is critical to tailor them to their specific functions. Here we integrate mechanical testing and machine learning to automatically discover the best models for knitted polypropylene fabrics. We show that warp knitted fabrics possess a complex symmetry with three distinct microstructural directions. Along these, the behavior is dominated by an exponential linear term that characterize the initial flexibility of the virgin mesh and the nonlinear stiffening as the loops of the fabric tighten. We expect that our technology will generalize naturally to other fabrics and enable the robust discovery of complex anisotropic models for a wide variety of textile structures.
纺织面料具有独特的机械性能,使其成为许多工程和医学应用的理想选择:它们最初是柔性的,非线性变硬,并且具有超各向异性。各种研究已经描述了纺织结构对机械加载的响应;然而,我们对其特殊性质和功能的理解仍然不完整。在这里,我们将双向测试和本构神经网络集成在一起,自动发现最佳模型和参数来描述经编聚丙烯织物。我们使用来自不同安装方向的实验,并发现可解释的各向异性模型,这些模型在训练和测试过程中都表现良好。我们的研究表明,经编织物的本构模型对纺织微结构的准确表示非常敏感,并且具有三个微结构方向的模型比仅具有两个平面内方向的经典各向异性模型表现更好。引人注目的是,在 2=16,384 种可能的项组合中,我们始终发现具有两个指数线性四不变项的模型,这些模型固有地捕获原始网眼的初始柔韧性和网眼的环收紧时的明显非线性变硬。我们预计,我们在这里开发和原型化的工具将自然推广到其他纺织面料 - 无论是经编还是纬编,无论是纬编还是经编,无论是聚合物还是金属 - 并最终为各种纺织结构的各向异性本构模型的稳健发现提供支持。除了发现本构模型之外,我们还设想利用自动模型发现作为可穿戴设备、可拉伸电子产品和智能织物的生成材料设计的新策略,因为具有可调特性和功能的可编程纺织超材料。我们的源代码、数据和示例可在 https://github.com/LivingMatterLab/CANN 上获得。
纺织结构在许多生物医学应用中(包括组织工程、伤口愈合和外科修复)迅速流行。精确了解它们独特的机械性能对于根据其特定功能对其进行调整至关重要。在这里,我们将机械测试和机器学习集成在一起,自动发现经编聚丙烯织物的最佳模型。我们表明,经编织物具有三个不同的微观结构方向的复杂对称性。在这些方向上,行为由一个指数线性项主导,该指数线性项描述了原始网眼的初始柔韧性以及织物环收紧时的非线性变硬。我们预计我们的技术将自然推广到其他织物,并能够为各种纺织结构的复杂各向异性模型进行稳健的发现。