Suppr超能文献

标记加权提高了北欧红牛和泽西奶牛群体乳房健康性状的单步基因组预测可靠性。

Marker weighting improves single-step genomic prediction reliabilities of udder health traits in Nordic Red and Jersey dairy cattle populations.

作者信息

Chegini Arash, Strandén Ismo, Karaman Emre, Iso-Touru Terhi, Pösö Jukka, Aamand Gert P, Lidauer Martin H

机构信息

Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.

Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.

出版信息

J Dairy Sci. 2025 Jan;108(1):651-663. doi: 10.3168/jds.2024-25374. Epub 2024 Oct 5.

Abstract

The standard single-step genomic prediction model assumes that all SNP markers explain an equal amount of genetic variance, which, however, may not be true. This is because SNPs are located in or near different genes with different functions. Therefore, it seems logical to consider SNP marker-specific weights when predicting genomic breeding values. We hypothesized that allowing differences in the amount of genetic variance explained by each SNP marker will improve prediction reliability and response to selection. To investigate this hypothesis, we first developed multitrait standard single-step genomic models based on the current multitrait random regression evaluation models for udder health traits of the Nordic Red (RDC) and Jersey (JER) dairy cattle populations. The models included 4 clinical mastitis (CM) traits, 3 test-day SCS traits, and the conformation traits fore udder attachment and udder depth. In the second step, we investigated the effect of applying different SNP marker weighting scenarios in the single-step genomic prediction models, for which a single-step SNP best linear unbiased prediction model was applied. We investigated the prediction reliability of the different models by forward prediction, where the last 4 years of the data were removed to estimate breeding values for validation candidates. In addition, genetic trends of the pedigree-based estimated breeding values (PEBV) and GEBV were examined. The datasets for RDC and JER included 6.9 million and 1.2 million animals, of which 5.6 million and 0.9 million cows had records, respectively. The number of genotyped animals was 125,789 and 64,777 for RDC and JER, respectively. Cows had repeated SCS observations but only single observations for all other traits and breeding values for all traits were modeled by one covariance function. This required modeling 12 eigenvalue breeding value coefficients for each cow and developing SNP marker weights for the principal components rather than for the biological traits. We investigated 3 SNP marker weighting scenarios: (1) a nonlinear method similar to BayesA, (2) using the classical formula 2pqû that accounts for allele heterozygosity, and (3) applying a mean SNP weight calculated by 2pqû for every 20 adjacent SNP markers. Bias, dispersion, and prediction reliability were calculated using PEBV or GEBV from the evaluation based on the full dataset on those using the reduced dataset. We found that the recent favorable genetic trend in CM and SCS has been accelerated since the introduction of genomic selection. The study also shows that a significant increase in prediction reliability, i.e., 0.74 versus 0.48 for RDC and 0.72 versus 0.41 for JER cows for CM, can be achieved with a standard single-step genomic prediction model compared with a pedigree-based prediction model. Almost all scenarios with SNP marker weighting further improved the prediction reliability between 0.5% and 12.7%. The highest improvement was achieved by weighing the SNP markers based on the 2pqû formula.

摘要

标准的单步基因组预测模型假定所有单核苷酸多态性(SNP)标记解释等量的遗传方差,然而,这可能并非事实。这是因为SNP位于具有不同功能的不同基因内部或附近。因此,在预测基因组育种值时考虑SNP标记特异性权重似乎是合乎逻辑的。我们假设允许每个SNP标记解释的遗传方差量存在差异将提高预测可靠性和对选择的响应。为了研究这一假设,我们首先基于当前北欧红牛(RDC)和泽西牛(JER)奶牛群体乳房健康性状的多性状随机回归评估模型,开发了多性状标准单步基因组模型。这些模型包括4种临床型乳房炎(CM)性状、3种测定日体细胞评分(SCS)性状,以及乳房前部附着和乳房深度的体型性状。第二步,我们研究了在单步基因组预测模型中应用不同SNP标记加权方案的效果,为此应用了单步SNP最佳线性无偏预测模型。我们通过向前预测研究了不同模型的预测可靠性,其中去除了最后4年的数据以估计验证候选个体的育种值。此外,还检查了基于系谱的估计育种值(PEBV)和基因组估计育种值(GEBV)的遗传趋势。RDC和JER的数据集分别包含690万头和120万头动物,其中分别有560万头和90万头奶牛有记录。RDC和JER的基因分型动物数量分别为125,789头和64,777头。奶牛有重复的SCS观测值,但所有其他性状只有单次观测值,并且所有性状的育种值均由一个协方差函数建模。这需要为每头奶牛建模12个特征值育种值系数,并为主要成分而非生物学性状开发SNP标记权重。我们研究了3种SNP标记加权方案:(1)一种类似于贝叶斯A的非线性方法,(2)使用考虑等位基因杂合性的经典公式2pqû,(3)对每20个相邻SNP标记应用由2pqû计算的平均SNP权重。使用基于完整数据集评估的PEBV或GEBV以及基于简化数据集评估的PEBV或GEBV来计算偏差、离散度和预测可靠性。我们发现,自引入基因组选择以来,CM和SCS最近的有利遗传趋势得到了加速。该研究还表明,与基于系谱的预测模型相比,标准的单步基因组预测模型可以显著提高预测可靠性,即RDC奶牛的CM预测可靠性从0.48提高到0.74,JER奶牛的CM预测可靠性从0.41提高到0.72。几乎所有SNP标记加权方案都进一步提高了0.5%至12.7%的预测可靠性。基于2pqû公式对SNP标记进行加权实现了最高的改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验