Suppr超能文献

多性状全基因组关联遗传值的最佳线性无偏预测

Multitrait genome-wide association best linear unbiased prediction of genetic values.

作者信息

Meuwissen Theo, Boerner Vinzent

机构信息

Faculty of Life Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.

GHPC Consulting and Service PTY, LTD, Armidale, Australia.

出版信息

Genet Sel Evol. 2025 Mar 21;57(1):15. doi: 10.1186/s12711-025-00964-4.

Abstract

BACKGROUND

The GWABLUP (Genome-Wide Association based Best Linear Unbiased Prediction) approach used GWA analysis results to differentially weigh the SNPs in genomic prediction, and was found to improve the reliabilities of genomic predictions. However, the proposed multitrait GWABLUP method assumed that the SNP weights were the same across the traits. Here we extended and validated the multitrait GWABLUP method towards using trait specific SNP weights.

RESULTS

In a 3-trait dairy data set, multitrait GWAS estimates of SNP effects and their standard errors were translated into trait specific likelihood ratios for the SNPs having trait effects, and posterior probabilities using the GWABLUP approach. This produced trait specific prior (co)variance matrices for each SNP, which were applied in a SNP-BLUP model for genomic predictions, implemented in the APEX linear model suite. In a validation population, the trait specific SNP weights resulted in more reliable predictions for all three traits. Especially, for somatic cell count, which was hardly related to the other traits, the use of the same weights across all traits was harming genomic predictions. The use of trait specific SNP weights overcame this problem.

CONCLUSIONS

In multitrait GWABLUP analyses of ~ 30,000 reference population cows, trait specific SNP weights resulted in up to 13% more reliable genomic predictions than unweighted SNP-BLUP, and improved genomic predictions for all three studied traits.

摘要

背景

基因组全关联最佳线性无偏预测(GWABLUP)方法利用全基因组关联分析(GWA)结果对基因组预测中的单核苷酸多态性(SNP)进行差异化加权,结果表明该方法可提高基因组预测的可靠性。然而,所提出的多性状GWABLUP方法假定各性状的SNP权重相同。在此,我们对多性状GWABLUP方法进行了扩展和验证,以使用特定性状的SNP权重。

结果

在一个三性状奶牛数据集中,对于具有性状效应的SNP,将SNP效应的多性状GWAS估计值及其标准误转化为特定性状的似然比,并使用GWABLUP方法计算后验概率。这为每个SNP生成了特定性状的先验(协)方差矩阵,并将其应用于APEX线性模型套件中实现的用于基因组预测的SNP-BLUP模型。在一个验证群体中,特定性状的SNP权重对所有三个性状都产生了更可靠的预测。特别是对于与其他性状几乎无关的体细胞计数,在所有性状上使用相同的权重会损害基因组预测。使用特定性状的SNP权重克服了这一问题。

结论

在对约30,000头参考群体奶牛进行的多性状GWABLUP分析中,特定性状的SNP权重比未加权的SNP-BLUP产生的基因组预测可靠性提高了多达13%,并改善了所有三个研究性状的基因组预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a34/11927129/6f9211e94e1c/12711_2025_964_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验