Fresco S, Boichard D, Fritz S, Martin P
Eliance, 75595 Paris Cedex 12, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France.
Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France.
J Dairy Sci. 2024 Dec;107(12):11311-11323. doi: 10.3168/jds.2024-25231. Epub 2024 Oct 5.
Genetic selection to reduce CH emissions is a promising solution for reducing the environmental impact of dairy cattle production. Before such a selection program can be implemented, however, it is necessary to have a better understanding of the genetic determinism of CH emissions and how this might influence other traits of interest. In this study, we performed a genetic analysis of 6 CH traits predicted from milk mid-infrared spectra. We predicted 4 CH traits in g/d (methane production [MeP], calculated using different prediction equations), 1 trait in g/kg of fat- and protein-corrected milk (methane intensity [MeI]), and 1 trait in g/kg of DMI. Using an external dataset, we determined these prediction equations to be applicable in the range of 70 to 200 DIM. We then estimated genetic parameters in this DIM range using random regression models on a large dataset of 829,025 spectra collected between January 2013 and February 2023 from 167,514 first- and second-parity Holstein cows. The 6 CH traits were found to be genetically stable throughout and across lactations, with average genetic correlations within a lactation ranging from 0.93 to 0.98, and those between lactations ranging from 0.92 to 0.98. All 6 CH traits were also found to be heritable, with average heritability ranging from 0.24 to 0.45. The average pairwise genetic correlations between the 6 CH traits ranged from -0.15 to 0.77, revealing that they are genetically distinct, including the 4 measurements of MeP. Of the 6 traits, 2 measures of MeP and MeI did not present antagonistic genetic correlations with milk yield, fat and protein contents, and SCS, and can probably be included in breeding goals with limited impact on other traits of interest.
通过基因选择来减少甲烷排放是降低奶牛生产对环境影响的一个有前景的解决方案。然而,在实施这样一个选择计划之前,有必要更好地了解甲烷排放的遗传决定因素以及这可能如何影响其他感兴趣的性状。在本研究中,我们对从牛奶中红外光谱预测的6个甲烷性状进行了遗传分析。我们预测了4个以克/天为单位的甲烷性状(甲烷产量[MeP],使用不同的预测方程计算)、1个以克/千克脂肪和蛋白质校正乳为单位的性状(甲烷强度[MeI])以及1个以克/千克干物质采食量为单位的性状。使用一个外部数据集,我们确定这些预测方程适用于70至200天的泌乳期范围。然后,我们在2013年1月至2023年2月期间从167,514头头胎和二胎荷斯坦奶牛收集的829,025个光谱的大型数据集上,使用随机回归模型估计了这个泌乳期范围内的遗传参数。发现这6个甲烷性状在整个泌乳期和不同泌乳期之间在遗传上是稳定的,同一泌乳期内的平均遗传相关性在0.93至0.98之间,不同泌乳期之间的平均遗传相关性在0.92至0.98之间。还发现所有6个甲烷性状都是可遗传的,平均遗传力在0.24至0.45之间。这6个甲烷性状之间的平均成对遗传相关性在-0.15至0.77之间,表明它们在遗传上是不同的,包括4个甲烷产量的测量值。在这6个性状中,2个甲烷产量测量值和甲烷强度与产奶量、脂肪和蛋白质含量以及体细胞评分没有呈现拮抗遗传相关性,并且可能可以纳入育种目标,对其他感兴趣的性状影响有限。