Suppr超能文献

多孔金属膦酸盐框架:构建与物理性质

Porous Metal Phosphonate Frameworks: Construction and Physical Properties.

作者信息

Zheng Tao, Tan Wenzhuo, Zheng Li-Min

机构信息

School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou 215400, China.

出版信息

Acc Chem Res. 2024 Oct 15;57(20):2973-2984. doi: 10.1021/acs.accounts.4c00337. Epub 2024 Oct 7.

Abstract

ConspectusPorous metal phosphonate frameworks (PMPFs) as a subclass of metal-organic frameworks (MOFs) have promising applications in the fields of gas adsorption and separation, ion exchange and storage, catalysis, sensing, etc. Compared to the typical carboxylate-based MOFs, PMPFs exhibit higher thermal and water stability due to the strong coordination ability of the phosphonate ligands. Despite their robust frameworks, PMPFs account for less than 0.51% of the porous MOFs reported so far. This is because metal phosphonates are highly susceptible to the formation of dense layered or pillared-layered structures, and they precipitate easily and are difficult to crystallize. There is a tendency to use phosphonate ligands containing multiple phosphonate groups and large organic spacers to prevent the formation of dense structures and generate open frameworks with permanent porosity. Thus, many PMPFs are composed of chains or clusters of inorganic metal phosphonates interconnected by organic spacers. Using this feature, a wide range of metal ions and organic components can be selected, and their physical properties can be modulated. However, limited by the small number of PMPFs, there are still relatively few studies on the physical properties of PMPFs, some of which merely remain in the description of the phenomena and lack in-depth elaboration of the structure-property relationship. In this Account, we review the strategies for constructing PMPFs and their physical properties, primarily based on our own research. The construction strategies are categorized according to the number ( = 1-4) of phosphonate groups in the ligand. The physical properties include proton conduction, electrical conduction, magnetism, and photoluminescence properties. Proton conductivity of PMPFs can be enhanced by increasing the proton carrier concentration and mobility. The former can be achieved by adding acidic groups such as -POH and/or introducing acidic guests in the hydrophilic channels. The latter can be attained by introducing conjugate acid-base pairs or elevating the temperature. Semiconducting PMPFs, on the other hand, can be obtained by constructing highly conjugated networks of coordination bonds or introducing large conjugated organic linkers π-π stacked in the lattice. In the case of magnetic PMPFs, long-range magnetic ordering occurs at very low temperatures due to very weak magnetic exchange couplings propagated via O-P-O and/or O(P) units. However, lanthanide compounds may be interesting candidates for single-molecule magnets because of the strong single-ion magnetic anisotropy arising from the spin-orbit coupling and large magnetic moments of lanthanide ions. The luminescent properties of PMPFs depend on the metal ions and/or organic ligands. Emissive PMPFs containing lanthanides and/or uranyl ions are promising for sensing and photonic applications. We conclude with an outlook on the opportunities and challenges for the future development of this promising field.

摘要

综述

多孔金属膦酸盐骨架(PMPFs)作为金属有机骨架(MOFs)的一个子类,在气体吸附与分离、离子交换与存储、催化、传感等领域有着广阔的应用前景。与典型的基于羧酸盐的MOFs相比,由于膦酸盐配体具有较强的配位能力,PMPFs表现出更高的热稳定性和水稳定性。尽管其骨架结构稳定,但到目前为止,PMPFs在已报道的多孔MOFs中所占比例不到0.51%。这是因为金属膦酸盐极易形成致密的层状或柱状层状结构,它们容易沉淀且难以结晶。人们倾向于使用含有多个膦酸基团和大有机间隔基的膦酸盐配体来防止形成致密结构,并生成具有永久孔隙率的开放骨架。因此,许多PMPFs由通过有机间隔基相互连接的无机金属膦酸盐链或簇组成。利用这一特性,可以选择多种金属离子和有机组分,并调节它们的物理性质。然而,受限于PMPFs数量较少,对其物理性质的研究仍然相对较少,其中一些仅仅停留在现象描述上,缺乏对结构-性质关系的深入阐述。在本综述中,我们主要基于自己的研究成果,回顾了构建PMPFs的策略及其物理性质。构建策略根据配体中膦酸基团的数量(=1-4)进行分类。物理性质包括质子传导、电子传导、磁性和光致发光性质。通过增加质子载体浓度和迁移率可以提高PMPFs的质子传导率。前者可以通过在亲水性通道中添加酸性基团如-POH和/或引入酸性客体来实现。后者可以通过引入共轭酸碱对或提高温度来实现。另一方面,通过构建高度共轭的配位键网络或在晶格中引入π-π堆积的大共轭有机连接体,可以获得半导体PMPFs。对于磁性PMPFs,由于通过O-P-O和/或O(P)单元传播的磁交换耦合非常弱,在非常低的温度下会出现长程磁有序。然而,由于自旋轨道耦合产生的强单离子磁各向异性以及镧系离子的大磁矩,镧系化合物可能是单分子磁体的有趣候选物。PMPFs的发光性质取决于金属离子和/或有机配体。含有镧系元素和/或铀酰离子的发光PMPFs在传感和光子应用方面具有广阔前景。我们最后展望了这一有前途的领域未来发展的机遇和挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验