School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher, Education Institutions, Soochow University, Jiangsu, 215123, P. R. China.
Chemistry. 2019 Sep 25;25(54):12567-12575. doi: 10.1002/chem.201902310. Epub 2019 Sep 2.
Designability is an attractive feature for metal-organic frameworks (MOFs) and essential for reticular chemistry, and many ideas are significantly useful in the carboxylate system. Bi-, tri-, and tetra-topic phosphonate ligands are used to achieve framework structures. However, an efficient method for designing phosphonate MOFs is still on the way, especially for uranyl phosphonates, owing to the complicated coordination modes of the phosphonate group. Uranyl phosphonates prefer layer or pillar-layered structures as the topology extension for uranyl units occurs in the plane perpendicular to the linear uranium-oxo bonds and phosphonate ligands favor the formation of compact structures. Therefore, an approach that can construct three-dimensional (3D) uranyl phosphonate MOFs is desired. In this paper, a sterically hindered phosphonate ligand method (SHPL) is described and is successfully used to achieve 3D framework structures of uranyl phosphonates. Four MOF compounds ([AMIM] (UO )(TppmH )⋅H O (UPF-101), [BMMIM] (UO ) (TppmH ) ⋅H O (UPF-102), [Py14] (UO ) (TppmH ) ⋅3 H O (UPF-103), and BMIM (TppmH )F ⋅2 H O (UPF-104); [AMIM]=1-allyl-3-methylimidazolium, [BMMIM]=1-butyl-2,3-dimethylimidazolium, [Py14]=N-butyl-N-methylpyrrolidinium, and [BMIM]=1-butyl-3-methylimidazolium) are obtained by ionothermal synthesis, with zero-dimensional nodes of uranyl phosphonates linked by steric tetra-topic ligands, namely tetrakis[4-(dihyroxyphosphoryl)phenyl]methane (TppmH ), to give 3D framework structures. Characterization by PXRD, UV/Vis, IR, Raman spectroscopy, and thermogravimetry (TG) were also performed.
可设计性是金属有机骨架(MOFs)的一个吸引人的特征,也是网状化学的基础,许多想法在羧酸酯系统中非常有用。双、三、四齿膦酸配体用于构建骨架结构。然而,由于膦酸基团的配位模式复杂,设计膦酸 MOFs 的有效方法仍在探索中,特别是对于铀酰膦酸盐。铀酰膦酸盐倾向于层状或支柱层状结构,因为铀酰单元的拓扑扩展发生在垂直于线性铀-氧键的平面上,而膦酸配体有利于形成紧密的结构。因此,需要一种能够构建三维(3D)铀酰膦酸 MOF 的方法。在本文中,描述了一种空间位阻膦酸配体方法(SHPL),并成功地用于实现铀酰膦酸盐的 3D 骨架结构。通过离子热合成得到了四个 MOF 化合物([AMIM](UO2)(TppmH)⋅H2O(UPF-101),[BMMIM](UO2)(TppmH)⋅H2O(UPF-102),[Py14](UO2)(TppmH)⋅3H2O(UPF-103)和[BMIM](UO2)(TppmH)F⋅2H2O(UPF-104);[AMIM]=1-烯丙基-3-甲基咪唑,[BMMIM]=1-丁基-2,3-二甲基咪唑,[Py14]=N-丁基-N-甲基吡咯烷,[BMIM]=1-丁基-3-甲基咪唑),由零维铀酰膦酸盐节点通过空间位阻四齿配体,即四[4-(二羟基膦酰基)苯基]甲烷(TppmH)连接,得到 3D 骨架结构。通过 PXRD、UV/Vis、IR、拉曼光谱和热重分析(TG)进行了表征。