Fang Hongbin, Wu Haiping, Liu Zuolin, Zhang Qiwei, Xu Jian
Institute of AI and Robotics, Fudan University , Shanghai 200433, People's Republic of China.
Yiwu Research Institute, Fudan University, Yiwu , Zhejiang 322000, People's Republic of China.
Philos Trans A Math Phys Eng Sci. 2024 Oct 7;382(2283):20240014. doi: 10.1098/rsta.2024.0014.
Recent advances in origami science and engineering have particularly focused on the challenges of dynamics. While research has primarily focused on statics and kinematics, the need for effective and processable dynamic models has become apparent. This paper evaluates various dynamic modelling techniques for rigid-foldable origami, particularly focusing on their ability to capture nonlinear dynamic behaviours. Two primary methods, the lumped mass-spring-damper approach and the energy-based method, are examined using a bistable stacked Miura-origami (SMO) structure as a case study. Through systematic dynamic experiments, we analyse the effectiveness of these models in predicting bistable dynamic responses, including intra- and interwell oscillations, in different loading conditions. Our findings reveal that the energy-based approach, which considers the structure's inertia and utilizes dynamic experimental data for parameter identification, outperforms other models in terms of validity and accuracy. This model effectively predicts the dynamic response types, the rich and complex nonlinear characteristics and the critical frequency where interwell oscillations occur. Despite its relatively increased complexity in model derivation, it maintains computational efficiency and shows promise for broader applications in origami dynamics. By comparing model predictions with experimental results, this study enhances our understanding of origami dynamics and contributes valuable insights for future research and applications. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
折纸科学与工程领域的最新进展特别关注动力学方面的挑战。虽然研究主要集中在静力学和运动学,但有效且可处理的动力学模型的需求已变得显而易见。本文评估了用于刚性可折叠折纸的各种动力学建模技术,尤其关注它们捕捉非线性动力学行为的能力。以双稳态堆叠三浦折纸(SMO)结构为例,研究了两种主要方法,即集总质量 - 弹簧 - 阻尼器方法和基于能量的方法。通过系统的动力学实验,我们分析了这些模型在预测不同加载条件下双稳态动力学响应(包括阱内和阱间振荡)方面的有效性。我们的研究结果表明,基于能量的方法考虑了结构的惯性并利用动力学实验数据进行参数识别,在有效性和准确性方面优于其他模型。该模型有效地预测了动力学响应类型、丰富复杂的非线性特征以及阱间振荡发生的临界频率。尽管其在模型推导中相对增加了复杂性,但它保持了计算效率,并在折纸动力学的更广泛应用中显示出前景。通过将模型预测与实验结果进行比较,本研究增进了我们对折纸动力学的理解,并为未来的研究和应用提供了有价值的见解。本文是主题为“受折纸/剪纸启发的结构:从基础到应用”的一部分。