Grasinger Matthew, Gillman Andrew, Buskohl Philip R
Air Force Research Laboratory, Wright-Patterson AFB, OH, USA.
Philos Trans A Math Phys Eng Sci. 2024 Oct 7;382(2283):20240203. doi: 10.1098/rsta.2024.0203.
The use of origami in engineering has significantly expanded in recent years, spanning deployable structures across scales, folding robotics and mechanical metamaterials. However, finding foldable paths can be a formidable task as the kinematics are determined by a nonlinear system of equations, often with several degrees of freedom. In this article, we leverage a Lagrangian approach to derive reduced-order compatibility conditions for rigid-facet origami vertices with reflection and rotational symmetries. Then, using the reduced-order conditions, we derive exact, multi-degree of freedom solutions for degree 6 and degree 8 vertices with prescribed symmetries. The exact kinematic solutions allow us to efficiently investigate the topology of allowable kinematics, including the consideration of a self-contact constraint, and then visually interpret the role of geometric design parameters on these admissible fold paths by monitoring the change in the kinematic topology. We then introduce a procedure to construct lower-symmetry kinematic solutions by breaking symmetry of higher-order kinematic solutions in a systematic way that preserves compatibility. The multi-degree of freedom solutions discovered here should assist with building intuition of the kinematic feasibility of higher-degree origami vertices and also facilitate the development of new algorithmic procedures for origami-engineering design.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
近年来,折纸在工程领域的应用显著扩展,涵盖了各种尺度的可展开结构、折叠机器人和机械超材料。然而,由于运动学由非线性方程组决定,且通常具有多个自由度,找到可折叠路径可能是一项艰巨的任务。在本文中,我们利用拉格朗日方法推导具有反射和旋转对称性的刚性面折纸顶点的降阶相容性条件。然后,使用这些降阶条件,我们为具有规定对称性的6次和8次顶点推导精确的多自由度解。精确的运动学解使我们能够有效地研究允许运动学的拓扑结构,包括考虑自接触约束,然后通过监测运动学拓扑结构的变化直观地解释几何设计参数对这些可允许折叠路径的作用。然后,我们介绍一种通过以保持相容性的系统方式打破高阶运动学解的对称性来构建低对称性运动学解的方法。这里发现的多自由度解应有助于建立对高阶折纸顶点运动学可行性的直观认识,并促进折纸工程设计新算法程序的开发。本文是主题为“受折纸/剪纸启发的结构:从基础到应用”这一特刊的一部分。