Hwang Dohgyu, Lee Chanhong, Bartlett Michael D
Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg VA 24061, USA.
Macromolecules Innovation Institute, Virginia Tech, Blacksburg VA 24061, USA.
Philos Trans A Math Phys Eng Sci. 2024 Oct 7;382(2283):20240011. doi: 10.1098/rsta.2024.0011.
Metamaterial design approaches, which integrate structural elements into material systems, enable the control of uncommon behaviours by decoupling local and global properties. Leveraging this conceptual framework, metamaterial adhesives incorporate nonlinear cut architectures into adhesive films to achieve unique combinations of adhesion capacity, release, and spatial tunability by controlling how cracks propagate forward and in reverse directions during separation. Here, metamaterial adhesive designs are explored with triangular cut features while integrating hierarchical and secondary cut patterns among primary nonlinear cuts. Both cut geometry and secondary cut features tune adhesive force capacity and energy of separation. Importantly, the size and spacing of cut features must be designed around a critical length scale. When secondary cut features are greater than a critical length, cracks can be steered in multiple directions, going both forward and backwards within a primary attachment element. This control over crack dynamics enhances the work of separation by a factor of 1.5, while maintaining the peel force relative to a primary cut. If hierarchical cut features are too small or too compliant, they interact and do not distinctly modify crack behaviour. This work highlights the importance of adhesive length scales and stiffness for crack control and attachment characteristics in adhesive films.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
超材料设计方法将结构元素集成到材料系统中,通过解耦局部和全局特性来实现对罕见行为的控制。利用这一概念框架,超材料粘合剂将非线性切口结构融入粘合剂薄膜中,通过控制分离过程中裂纹向前和向后扩展的方式,实现粘附力、释放和空间可调性的独特组合。在此,我们探索了具有三角形切口特征的超材料粘合剂设计,同时在主要的非线性切口中整合了分层和二次切口图案。切口几何形状和二次切口特征都能调节粘附力和分离能量。重要的是,切口特征的尺寸和间距必须围绕一个临界长度尺度进行设计。当二次切口特征大于临界长度时,裂纹可以在多个方向上被引导,在一个主要附着元件内既向前又向后扩展。这种对裂纹动力学的控制将分离功提高了1.5倍,同时相对于主要切口保持了剥离力。如果分层切口特征太小或太柔顺,它们就会相互作用,无法明显改变裂纹行为。这项工作突出了粘合剂长度尺度和刚度对粘合剂薄膜中裂纹控制和附着特性的重要性。本文是主题为“折纸/剪纸启发的结构:从基础到应用”的一部分。