Suppr超能文献

构建并验证急性髓系白血病患者血小板输注难治的辅助决策模型。

Construction and Validation of an Assistant Decision-Making Model for Platelet Transfusion Refractoriness in Patients with Acute Myeloid Leukemia.

机构信息

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.

出版信息

Clin Appl Thromb Hemost. 2024 Jan-Dec;30:10760296241278345. doi: 10.1177/10760296241278345.

Abstract

Platelet transfusion refractoriness (PTR) is a complication of multiple transfusions in patients with hematological malignancies. PTR may induce a series of adverse events, such as delaying the treatment of the primary disease and life-threatening bleeding. Early prediction of PTR holds promise in facilitating prompt adjustments to treatment strategies by clinicians. We collected the clinical data of 250 patients with acute myeloid leukemia (AML). Subsequently, the patients were randomly divided into a training cohort and a validation cohort at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic-regression methods were used to select characteristic variables. Assessment of the model was conducted through the receiver operating characteristic (ROC), calibration curve and decision curve analysis (DCA). Out of 250 patients with AML, 95 individuals (38.0%) experienced PTR. Among those with positive platelet associated antibodies (PAAs), the incidence of PTR was 66.7% (30/45), while among patients positive for human leukocyte antigen(HLA)-I antibodies, the PTR incidence was 56.5% (48/85). The final predictive model incorporated risk factors such as KIT mutations, splenomegaly, the number of HLA-I antibodies, and positive PAAs. A prediction nomogram model was constructed based on these four risk factors. The LASSO-logistic regression model demonstrated excellent discrimination, calibration, and clinical decision value. The LASSO-logistic regression model in the study can better predict the risk of PTR. The study includes both PAAs and HLA antibodies, expanding the field of work that has not been involved in the previous prediction model of PTR.

摘要

血小板输注无效(PTR)是血液恶性肿瘤患者多次输血的并发症。PTR 可引发一系列不良事件,如延迟原发疾病的治疗和危及生命的出血。早期预测 PTR 有望促使临床医生及时调整治疗策略。

我们收集了 250 例急性髓系白血病(AML)患者的临床数据。随后,将患者按照 7:3 的比例随机分为训练队列和验证队列。采用最小绝对值收缩和选择算子(LASSO)和多变量逻辑回归方法选择特征变量。通过接受者操作特征(ROC)、校准曲线和决策曲线分析(DCA)评估模型。

在 250 例 AML 患者中,95 例(38.0%)发生 PTR。血小板相关抗体(PAAs)阳性者 PTR 发生率为 66.7%(30/45),人类白细胞抗原(HLA)-I 抗体阳性者 PTR 发生率为 56.5%(48/85)。最终的预测模型纳入了 KIT 突变、脾肿大、HLA-I 抗体数量和 PAAs 阳性等风险因素。基于这四个风险因素构建了预测列线图模型。LASSO-逻辑回归模型具有良好的鉴别力、校准度和临床决策价值。

本研究中的 LASSO-逻辑回归模型可更好地预测 PTR 风险。该研究同时纳入了 PAAs 和 HLA 抗体,扩展了之前 PTR 预测模型未涉及的工作领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fefc/11492188/5acb7feb18ed/10.1177_10760296241278345-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验