Suppr超能文献

共价有机框架材料的光催化作用

Photocatalysis with Covalent Organic Frameworks.

作者信息

Chen Yongzhi, Jiang Donglin

机构信息

Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

出版信息

Acc Chem Res. 2024 Nov 5;57(21):3182-3193. doi: 10.1021/acs.accounts.4c00517. Epub 2024 Oct 7.

Abstract

ConspectusUtilizing light to enable chemical conversions presents a green and sustainable approach to produce fuels and chemicals, and photocatalysis is one of the key chemical technologies that needs to be well developed in this century. Despite continuous progress in the advancement of various photocatalysts based on small inorganic and organic compounds, polymers, and networks, designing and constructing photocatalysts that combine activity, selectivity, and reusability remains a challenging goal. For catalytic activity, the difficulty originates from the complexity of photochemical reactions, where the light-harvesting system, multielectron and multihole-involving processes, and pinpoint mass delivery simultaneously need to be established in the system. For selectivity, the difficulty stems from the elaborate design of catalytic sites and space, especially their orbital energy levels, spatial arrangement, and environment; developing a molecular strategy that enables an overall design and control of these factors of different aspects is necessary yet arduous. For reusability, the difficulty arises from the stability and recyclability of the photocatalysts upon continuous operation under photoredox reaction conditions. How to recover photocatalysts in an energy-saving way to enable their cyclic use while retaining activity and selectivity is at the core of this problem. These bottleneck issues reflect that molecular design of a photocatalyst is not a simple summation of the above requirements, but a systematic scheme that can organically interlock various aspects is needed.To enable such an elaborate design and precise control, a basic requirement of the scaffold for constructing a promising photocatalyst is that its primary and high-order structures should be molecularly predesignable and synthetically controllable. Such a molecular regime has successfully evolved in natural photosynthesis, where light-harvesting chlorophyll antennae and photocatalytic centers are spatially well-organized and energetically well-defined to build ways for exciton migration, photoinduced electron transfer and charge separation, electron and hole flows, and oxidation of water and reduction of carbon dioxide, thereby converting water into oxygen to release ATP and NADPH via the light reaction and carbon dioxide into glucose with ATP and NADPH through the dark reaction. Similarly, a predesignable polymeric scaffold would be promising for integrating these complex photochemical processes to construct photocatalysts.Covalent organic frameworks (COFs) are a class of extended yet polymeric materials that enable the organization of organic units or metallo-organic moieties into well-defined architectures. In principle, COFs are molecularly designable with topology diagrams and synthetically controllable through polymerization reactions, offering an irreplaceable platform for designing and synthesizing photocatalysts. This feature enticed researchers to develop various photocatalysts based on COFs and drove the rapid progress in this field over the past decade. In this Account, we summarize the recent advances in the molecular design and synthetic control of COF photocatalysts, by highlighting the key achievements in developing ways to enable light harvesting, trigger photoinduced electron transfer and charge separation, allow charge carrier transport and mass delivery, control energy level, catalytic space, and environmental engineering, and develop stability and recyclability with an aim to reveal a full picture of this field. By scrutinizing typical photocatalytic reactions, we show the key problems to be addressed for COFs and predict future directions.

摘要

综述利用光实现化学转化为生产燃料和化学品提供了一种绿色且可持续的方法,光催化是本世纪需要大力发展的关键化学技术之一。尽管基于小型无机和有机化合物、聚合物及网络的各种光催化剂不断取得进展,但设计和构建兼具活性、选择性和可重复使用性的光催化剂仍是一个具有挑战性的目标。对于催化活性而言,困难源于光化学反应的复杂性,在该反应体系中,需要同时建立光捕获系统、涉及多电子和多空穴的过程以及精确的质量传递。对于选择性,困难在于催化位点和空间的精心设计,尤其是它们的轨道能级、空间排列和环境;制定一种能够对这些不同方面的因素进行全面设计和控制的分子策略既必要又艰巨。对于可重复使用性,困难源于光催化剂在光氧化还原反应条件下连续运行时的稳定性和可回收性。如何以节能的方式回收光催化剂以实现其循环使用,同时保持活性和选择性,是这个问题的核心。这些瓶颈问题表明,光催化剂的分子设计并非上述要求的简单相加,而是需要一个能够将各个方面有机结合的系统方案。为了实现这种精心设计和精确控制,构建有前景的光催化剂的支架的一个基本要求是其一级和高阶结构应在分子水平上可预先设计且在合成过程中可控。这种分子机制在自然光合作用中已成功演化,其中光捕获叶绿素天线和光催化中心在空间上组织良好且能量明确,为激子迁移、光致电子转移和电荷分离、电子和空穴流动以及水的氧化和二氧化碳的还原构建了途径,从而通过光反应将水转化为氧气以释放ATP和NADPH,并通过暗反应利用ATP和NADPH将二氧化碳转化为葡萄糖。同样,一个可预先设计的聚合物支架对于整合这些复杂的光化学过程以构建光催化剂很有前景。共价有机框架(COF)是一类扩展的聚合物材料,能够将有机单元或金属有机部分组织成明确的结构。原则上,COF可通过拓扑图在分子水平上进行设计,并通过聚合反应在合成过程中进行控制,为设计和合成光催化剂提供了一个不可替代的平台。这一特性吸引研究人员开发基于COF的各种光催化剂,并推动了该领域在过去十年的快速发展。在本综述中,我们总结了COF光催化剂在分子设计和合成控制方面的最新进展,重点介绍了在开发实现光捕获、触发光致电子转移和电荷分离、允许电荷载流子传输和质量传递、控制能级、催化空间和环境工程以及提高稳定性和可回收性等方面的关键成就,旨在揭示该领域的全貌。通过仔细研究典型的光催化反应,我们展示了COF需要解决的关键问题并预测了未来的发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验