Suppr超能文献

基于位置的放射学报告引导的半监督学习用于前列腺癌检测

Location-based Radiology Report-Guided Semi-supervised Learning for Prostate Cancer Detection.

作者信息

Chen Alex, Lay Nathan, Harmon Stephanie, Ozyoruk Kutsev, Yilmaz Enis, Wood Brad J, Pinto Peter A, Choyke Peter L, Turkbey Baris

出版信息

ArXiv. 2024 Jun 18:arXiv:2406.12177v1.

Abstract

Prostate cancer is one of the most prevalent malignancies in the world. While deep learning has potential to further improve computer-aided prostate cancer detection on MRI, its efficacy hinges on the exhaustive curation of manually annotated images. We propose a novel methodology of semisupervised learning (SSL) guided by automatically extracted clinical information, specifically the lesion locations in radiology reports, allowing for use of unannotated images to reduce the annotation burden. By leveraging lesion locations, we refined pseudo labels, which were then used to train our location-based SSL model. We show that our SSL method can improve prostate lesion detection by utilizing unannotated images, with more substantial impacts being observed when larger proportions of unannotated images are used.

摘要

前列腺癌是全球最常见的恶性肿瘤之一。虽然深度学习有潜力进一步改进磁共振成像(MRI)上的计算机辅助前列腺癌检测,但其功效取决于手动标注图像的详尽整理。我们提出了一种由自动提取的临床信息(特别是放射学报告中的病变位置)引导的半监督学习(SSL)新方法,该方法允许使用未标注图像以减轻标注负担。通过利用病变位置,我们优化了伪标签,然后用这些伪标签训练基于位置的SSL模型。我们表明,我们的SSL方法可以通过利用未标注图像来改善前列腺病变检测,当使用更大比例的未标注图像时,会观察到更显著的效果。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验