Stricker Nikki H, Frank Ryan D, Boots Elizabeth A, Fan Winnie Z, Christianson Teresa J, Kremers Walter K, Stricker John L, Machulda Mary M, Fields Julie A, Lucas John A, Hassenstab Jason, Aduen Paula A, Day Gregory S, Graff-Radford Neill R, Jack Clifford R, Graff-Radford Jonathan, Petersen Ronald C
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.
Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA.
medRxiv. 2024 Sep 16:2024.09.14.24313641. doi: 10.1101/2024.09.14.24313641.
Few normative data for unsupervised, remotely-administered computerized cognitive measures are available. We examined variables to include in normative models for Mayo Test Drive (a multi-device remote cognitive assessment platform) measures, developed normative data, and validated the norms.
1240 Cognitively Unimpaired (CU) adults ages 32-100-years (96% white) from the Mayo Clinic Study of Aging and Mayo Alzheimer's Disease Research Center with Clinical Dementia Rating of 0 were included. We converted raw scores to normalized scaled scores and derived regression-based normative data adjusting for age, age, sex and education (base model); alternative norms are also provided (age+age+sex; age+age). We assessed additional terms using an cut-off of 1% variance improvement above the base model. We examined low test performance rates (<-1 standard deviation) in independent validation samples (n=167 CU, n=64 mild cognitive impairment (MCI), n=14 dementia). Rates were significantly different when 95% confidence intervals (CI) did not include the expected 14.7% base rate.
No model terms met the cut-off beyond the base model, including device type, response input source (e.g., mouse, etc.) or session interference. Norms showed expected low performance rates in CU and greater rates of low performance in MCI and dementia in independent validation samples.
Typical normative models appear appropriate for remote self-administered MTD measures and are sensitive to cognitive impairment. Device type and response input source did not explain enough variance for inclusion in normative models but are important for individual-level interpretation. Future work will increase inclusion of individuals from under-represented groups.
目前几乎没有关于无监督、远程管理的计算机化认知测量的规范数据。我们研究了梅奥测试驱动(一个多设备远程认知评估平台)测量规范模型中应包含的变量,制定了规范数据,并对这些规范进行了验证。
纳入了来自梅奥诊所衰老研究和梅奥阿尔茨海默病研究中心的1240名32至100岁的认知未受损(CU)成年人(96%为白人),临床痴呆评定量表评分为0。我们将原始分数转换为标准化量表分数,并得出基于回归的规范数据,对年龄、年龄、性别和教育程度进行了调整(基础模型);还提供了替代规范(年龄+年龄+性别;年龄+年龄)。我们使用比基础模型方差改善1%的临界值评估其他因素。我们在独立验证样本(n = 167名CU,n = 64名轻度认知障碍(MCI),n = 14名痴呆患者)中检查了低测试表现率(<-1个标准差)。当95%置信区间(CI)不包括预期的14.7%基础率时,比率有显著差异。
除基础模型外,没有模型因素达到临界值,包括设备类型、响应输入源(如鼠标等)或会话干扰。在独立验证样本中,规范显示CU中预期的低表现率,以及MCI和痴呆中更高的低表现率。
典型的规范模型似乎适用于远程自我管理的MTD测量,并且对认知障碍敏感。设备类型和响应输入源没有解释足够的方差以纳入规范模型,但对个体水平的解释很重要。未来的工作将增加纳入代表性不足群体的个体。