Suppr超能文献

胸廓发育不全综合征小儿受试者自由呼吸动态磁共振成像中半膈肌的自动分割

Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome.

作者信息

Akhtar Yusuf, Udupa Jayaram K, Tong Yubing, Wu Caiyun, Liu Tiange, Tong Leihui, Hosseini Mahdie, Al-Noury Mostafa, Chodvadiya Manali, McDonough Joseph M, Mayer Oscar H, Biko David M, Anari Jason B, Cahill Patrick, Torigian Drew A

出版信息

medRxiv. 2024 Sep 18:2024.09.17.24313704. doi: 10.1101/2024.09.17.24313704.

Abstract

PURPOSE

In respiratory disorders such as thoracic insufficiency syndrome (TIS), the quantitative study of the regional motion of the left hemi-diaphragm (LHD) and right hemi-diaphragm (RHD) can give detailed insights into the distribution and severity of the abnormalities in individual patients. Dynamic magnetic resonance imaging (dMRI) is a preferred imaging modality for capturing dynamic images of respiration since dMRI does not involve ionizing radiation and can be obtained under free-breathing conditions. Using 4D images constructed from dMRI of sagittal locations, diaphragm segmentation is an evident step for the said quantitative analysis of LHD and RHD in these 4D images.

METHODS

In this paper, we segment the LHD and RHD in three steps: recognition of diaphragm, delineation of diaphragm, and separation of diaphragm along the mid-sagittal plane into LHD and RHD. The challenges involved in dMRI images are low resolution, motion blur, suboptimal contrast resolution, inconsistent meaning of gray-level intensities for the same object across multiple scans, and low signal-to-noise ratio. We have utilized deep learning (DL) concepts such as Path Aggregation Network and Dual Attention Network for the recognition step, Dense-Net and Residual-Net in an enhanced encoder-decoder architecture for the delineation step, and a combination of GoogleNet and Recurrent Neural Network for the identification of the mid-sagittal plane in the separation step. Due to the challenging images of TIS patients attributed to their highly distorted and variable anatomy of the thorax, in such images we localize the diaphragm using the auto-segmentations of the lungs and the thoraco-abdominal skin.

RESULTS

We achieved an average±SD mean-Hausdorff distance of ∼3±3 mm for the delineation step and a positional error of ∼3±3 mm in recognizing the mid-sagittal plane in 100 3D test images of TIS patients with a different set of ∼430 3D images of TIS patients utilized for building the models for delineation, and separation. We showed that auto-segmentations of the diaphragm are indistinguishable from segmentations by experts, in images of near-normal subjects. In addition, the algorithmic identification of the mid-sagittal plane is indistinguishable from its identification by experts in images of near-normal subjects.

CONCLUSIONS

Motivated by applications in surgical planning for disorders such as TIS, we have shown an auto-segmentation set-up for the diaphragm in dMRI images of TIS pediatric subjects. The results are promising, showing that our system can handle the aforesaid challenges. We intend to use the auto-segmentations of the diaphragm to create the initial ground truth (GT) for newly acquired data and then refining them, to expedite the process of creating GT for diaphragm motion analysis, and to test the efficacy of our proposed method to optimize pre-treatment planning and post-operative assessment of patients with TIS and other disorders.

摘要

目的

在诸如胸廓发育不全综合征(TIS)等呼吸系统疾病中,对左半膈肌(LHD)和右半膈肌(RHD)的区域运动进行定量研究,可以深入了解个体患者异常情况的分布和严重程度。动态磁共振成像(dMRI)是获取呼吸动态图像的首选成像方式,因为dMRI不涉及电离辐射,且可在自由呼吸条件下获得。利用矢状位dMRI构建的4D图像,膈肌分割是对这些4D图像中的LHD和RHD进行上述定量分析的关键步骤。

方法

在本文中,我们分三步对LHD和RHD进行分割:膈肌识别、膈肌描绘以及沿矢状中平面将膈肌分离为LHD和RHD。dMRI图像面临的挑战包括分辨率低、运动模糊、对比度分辨率欠佳、多次扫描中同一物体的灰度强度含义不一致以及信噪比低。在识别步骤中,我们利用了诸如路径聚合网络和双注意力网络等深度学习(DL)概念;在描绘步骤中,采用了增强型编码器 - 解码器架构中的密集连接网络和残差网络;在分离步骤中,使用了谷歌网络和循环神经网络的组合来识别矢状中平面。由于TIS患者的图像具有挑战性,其胸廓解剖结构高度扭曲且多变,因此在这类图像中,我们利用肺和胸腹皮肤的自动分割来定位膈肌。

结果

在用于构建描绘和分离模型的约430张不同的TIS患者3D图像集基础上,对100张TIS患者的3D测试图像进行描绘步骤时,我们实现了平均±标准差的平均豪斯多夫距离约为3±3毫米,在识别矢状中平面时的位置误差约为3±3毫米。我们表明,在接近正常受试者的图像中,膈肌的自动分割与专家分割难以区分。此外,在接近正常受试者的图像中,矢状中平面的算法识别与专家识别也难以区分。

结论

受TIS等疾病手术规划应用的推动,我们展示了一种针对TIS儿科受试者dMRI图像中膈肌的自动分割设置。结果很有前景,表明我们的系统能够应对上述挑战。我们打算利用膈肌的自动分割为新获取的数据创建初始真值(GT),然后对其进行细化,以加快创建用于膈肌运动分析的GT的过程,并测试我们提出的方法在优化TIS和其他疾病患者的术前规划和术后评估方面的有效性。

相似文献

8
Regional diaphragm motion analysis via dynamic MRI.通过动态磁共振成像进行区域膈肌运动分析。
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2611951. Epub 2022 Apr 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验