Wragg Elizabeth, Skirrow Caroline, Dente Pasquale, Cotter Jack, Annas Peter, Lowther Milly, Backx Rosa, Barnett Jenny, Cree Fiona, Kroll Jasmin, Cormack Francesca
Clinical Science, Cambridge Cognition, Cambridge, United Kingdom.
School of Psychological Science, University of Bristol, Bristol, United Kingdom.
Front Digit Health. 2024 Sep 20;6:1294222. doi: 10.3389/fdgth.2024.1294222. eCollection 2024.
Normative cognitive data can distinguish impairment from healthy cognitive function and pathological decline from normal ageing. Traditional methods for deriving normative data typically require extremely large samples of healthy participants, stratifying test variation by pre-specified age groups and key demographic features (age, sex, education). Linear regression approaches can provide normative data from more sparsely sampled datasets, but non-normal distributions of many cognitive test results may lead to violation of model assumptions, limiting generalisability.
The current study proposes a novel Bayesian framework for normative data generation. Participants ( = 728; 368 male and 360 female, age 18-75 years), completed the Cambridge Neuropsychological Test Automated Battery via the research crowdsourcing website Prolific.ac. Participants completed tests of visuospatial recognition memory (Spatial Working Memory test), visual episodic memory (Paired Associate Learning test) and sustained attention (Rapid Visual Information Processing test). Test outcomes were modelled as a function of age using Bayesian Generalised Linear Models, which were able to derive posterior distributions of the authentic data, drawing from a wide family of distributions. Markov Chain Monte Carlo algorithms generated a large synthetic dataset from posterior distributions for each outcome measure, capturing normative distributions of cognition as a function of age, sex and education.
Comparison with stratified and linear regression methods showed converging results, with the Bayesian approach producing similar age, sex and education trends in the data, and similar categorisation of individual performance levels.
This study documents a novel, reproducible and robust method for describing normative cognitive performance with ageing using a large dataset.
规范性认知数据能够区分认知功能受损与健康认知功能,以及正常衰老与病理性衰退。传统的获取规范性数据的方法通常需要大量健康参与者样本,通过预先设定的年龄组和关键人口统计学特征(年龄、性别、教育程度)对测试差异进行分层。线性回归方法可以从抽样更稀疏的数据集中提供规范性数据,但许多认知测试结果的非正态分布可能导致违反模型假设,限制了其通用性。
本研究提出了一种用于生成规范性数据的新型贝叶斯框架。参与者(n = 728;368名男性和360名女性,年龄18 - 75岁)通过研究众包网站Prolific.ac完成了剑桥神经心理测试自动成套测验。参与者完成了视觉空间识别记忆测试(空间工作记忆测试)、视觉情景记忆测试(配对联想学习测试)和持续注意力测试(快速视觉信息处理测试)。使用贝叶斯广义线性模型将测试结果建模为年龄的函数,该模型能够从广泛的分布族中得出真实数据的后验分布。马尔可夫链蒙特卡罗算法从每个结果测量的后验分布中生成一个大型合成数据集,捕捉作为年龄、性别和教育程度函数的认知规范性分布。
与分层和线性回归方法的比较显示结果趋同,贝叶斯方法在数据中产生了相似的年龄、性别和教育趋势,以及对个体表现水平的相似分类。
本研究记录了一种使用大型数据集描述随年龄增长的规范性认知表现的新颖、可重复且稳健的方法。