Suppr超能文献

基于临床-脑电图微状态特征组合的药物难治性癫痫综合预测模型

A comprehensive prediction model of drug-refractory epilepsy based on combined clinical-EEG microstate features.

作者信息

Zhang Jinying, Zhu Chaofeng, Li Juan, Wu Luyan, Zhang Yuying, Huang Huapin, Lin Wanhui

机构信息

Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.

Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.

出版信息

Ther Adv Neurol Disord. 2024 Sep 25;17:17562864241276202. doi: 10.1177/17562864241276202. eCollection 2024.

Abstract

BACKGROUND

Epilepsy is a chronic neurological disorder characterized by recurrent seizures that significantly impact patients' quality of life. Identifying predictors is crucial for early intervention.

OBJECTIVE

Electroencephalography (EEG) microstates effectively describe the resting state activity of the human brain using multichannel EEG. This study aims to develop a comprehensive prediction model that integrates clinical features with EEG microstates to predict drug-refractory epilepsy (DRE).

DESIGN

Retrospective study.

METHODS

This study encompassed 226 patients with epilepsy treated at the epilepsy center of a tertiary hospital between October 2020 and May 2023. Patients were categorized into DRE and non-DRE groups. All patients were randomly divided into training and testing sets. Lasso regression combined with Stepglm [both] algorithms was used to screen independent risk factors for DRE. These risk factors were used to construct models to predict the DRE. Three models were constructed: a clinical feature model, an EEG microstate model, and a comprehensive prediction model (combining clinical-EEG microstates). A series of evaluation methods was used to validate the accuracy and reliability of the prediction models. Finally, these models were visualized for display.

RESULTS

In the training and testing sets, the comprehensive prediction model achieved the highest area under the curve values, registering 0.99 and 0.969, respectively. It was significantly superior to other models in terms of the C-index, with scores of 0.990 and 0.969, respectively. Additionally, the model recorded the lowest Brier scores of 0.034 and 0.071, respectively, and the calibration curve demonstrated good consistency between the predicted probabilities and observed outcomes. Decision curve analysis revealed that the model provided significant clinical net benefit across the threshold range, underscoring its strong clinical applicability. We visualized the comprehensive prediction model by developing a nomogram and established a user-friendly website to enable easy application of this model (https://fydxh.shinyapps.io/CE_model_of_DRE/).

CONCLUSION

A comprehensive prediction model for DRE was developed, showing excellent discrimination and calibration in both the training and testing sets. This model provided an intuitive approach for assessing the risk of developing DRE in patients with epilepsy.

摘要

背景

癫痫是一种慢性神经系统疾病,其特征为反复发作的癫痫发作,严重影响患者的生活质量。识别预测因素对于早期干预至关重要。

目的

脑电图(EEG)微状态使用多通道脑电图有效地描述了人脑的静息状态活动。本研究旨在开发一种综合预测模型,将临床特征与EEG微状态相结合,以预测药物难治性癫痫(DRE)。

设计

回顾性研究。

方法

本研究纳入了2020年10月至2023年5月在一家三级医院癫痫中心接受治疗的226例癫痫患者。患者被分为DRE组和非DRE组。所有患者被随机分为训练集和测试集。使用套索回归结合Stepglm算法筛选DRE的独立危险因素。这些危险因素被用于构建预测DRE的模型。构建了三个模型:临床特征模型、EEG微状态模型和综合预测模型(临床-EEG微状态相结合)。使用一系列评估方法验证预测模型的准确性和可靠性。最后,对这些模型进行可视化展示。

结果

在训练集和测试集中,综合预测模型的曲线下面积值最高,分别为0.99和0.969。在C指数方面,它显著优于其他模型,得分分别为0.990和0.969。此外,该模型的Brier得分分别为0.034和0.071,为最低,校准曲线显示预测概率与观察结果之间具有良好的一致性。决策曲线分析表明,该模型在整个阈值范围内提供了显著的临床净效益,突出了其强大的临床适用性。我们通过开发列线图对综合预测模型进行了可视化,并建立了一个用户友好的网站,以便于应用该模型(https://fydxh.shinyapps.io/CE_model_of_DRE/)。

结论

开发了一种用于DRE的综合预测模型,在训练集和测试集中均显示出优异的区分度和校准度。该模型为评估癫痫患者发生DRE的风险提供了一种直观的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b17d/11456178/bc89b5d7851b/10.1177_17562864241276202-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验