Suppr超能文献

一种用于检测重度主动脉瓣狭窄的人工智能算法:一项临床队列研究。

An Artificial Intelligence Algorithm for Detection of Severe Aortic Stenosis: A Clinical Cohort Study.

作者信息

Strom Jordan B, Playford David, Stewart Simon, Strange Geoff

机构信息

Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.

Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.

出版信息

JACC Adv. 2024 Sep 25;3(9):101176. doi: 10.1016/j.jacadv.2024.101176. eCollection 2024 Sep.

Abstract

BACKGROUND

Identifying individuals with severe aortic stenosis (AS) at high risk of mortality remains challenging using current clinical imaging methods.

OBJECTIVES

The purpose of this study was to evaluate an artificial intelligence decision support algorithm (AI-DSA) to augment the detection of severe AS within a well-resourced health care setting.

METHODS

Agnostic to clinical information, an AI-DSA trained to identify echocardiographic phenotype associated with an aortic valve area (AVA)<1 cm using minimal input data (excluding left ventricular outflow tract measures) was applied to routine transthoracic echocardiograms (TTE) reports from 31,141 U.S. Medicare beneficiaries at an academic medical center (2003-2017).

RESULTS

Performance of AI-DSA to detect the phenotype associated with an AVA<1 cm was excellent (sensitivity 82.2%, specificity 98.1%, negative predictive value 9.2%, c-statistic = 0.986). In addition to identifying clinical severe AS cases, AI-DSA identified an additional 1,034 (3.3%) individuals with guideline-defined moderate AS but with a similar clinical and TTE phenotype to those with severe AS with low rates of aortic valve replacement (6.6%). Five-year mortality was 75.9% in those with known severe AS, 73.5% in those with a similar phenotype to severe AS, and 44.6% in those without severe AS. The AI-DSA continued to perform well to identify severe AS among those with a depressed left ventricular ejection fraction. Overall rates of aortic valve replacement remained low, even in those with an AVA<1 cm (21.9%).

CONCLUSIONS

Without relying on left ventricular outflow tract measurements, an AI-DSA used echocardiographic reports to reliably identify the phenotype of severe AS. These results suggest possible utility for this AI-DSA to enhance detection of severe AS individuals at risk for adverse outcomes.

摘要

背景

使用当前临床成像方法识别具有高死亡风险的严重主动脉瓣狭窄(AS)患者仍然具有挑战性。

目的

本研究旨在评估一种人工智能决策支持算法(AI-DSA),以在资源丰富的医疗环境中增强对严重AS的检测。

方法

在不考虑临床信息的情况下,将一种经过训练以使用最少输入数据(不包括左心室流出道测量值)来识别与主动脉瓣面积(AVA)<1平方厘米相关的超声心动图表型的AI-DSA应用于一家学术医疗中心31141名美国医疗保险受益人的常规经胸超声心动图(TTE)报告(2003 - 2017年)。

结果

AI-DSA检测与AVA<1平方厘米相关表型的性能出色(敏感性82.2%,特异性98.1%,阴性预测值9.2%,c统计量 = 0.986)。除了识别临床严重AS病例外,AI-DSA还识别出另外1034名(3.3%)符合指南定义的中度AS但具有与严重AS相似临床和TTE表型且主动脉瓣置换率较低(6.6%)的个体。已知严重AS患者的五年死亡率为75.9%,具有与严重AS相似表型的患者为73.5%,无严重AS的患者为44.6%。AI-DSA在左心室射血分数降低的患者中识别严重AS方面仍表现良好。即使在AVA<1平方厘米的患者中,主动脉瓣置换的总体发生率仍然较低(21.9%)。

结论

无需依赖左心室流出道测量,AI-DSA利用超声心动图报告可靠地识别严重AS的表型。这些结果表明该AI-DSA可能有助于增强对有不良结局风险的严重AS个体的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aec/11450902/2b9713abef26/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验