Suppr超能文献

使用机器学习从超声视频自动评估右心房压力

Automated Assessment of Right Atrial Pressure From Ultrasound Videos Using Machine Learning.

作者信息

Yurk Dominic, Barrios Joshua P, Labrecque Langlais Elodie, Avram Robert, Aras Mandar A, Abu-Mostafa Yaser, Padmanabhan Arun, Tison Geoffrey H

机构信息

Department of Electrical Engineering, California Institute of Technology, Pasadena, USA.

Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA.

出版信息

JACC Adv. 2024 Aug 28;3(9):101192. doi: 10.1016/j.jacadv.2024.101192. eCollection 2024 Sep.

Abstract

BACKGROUND

Early recognition of volume overload is essential for heart failure patients. Volume overload can often be easily treated if caught early but causes significant morbidity if unrecognized and allowed to progress. Intravascular volume status can be assessed by ultrasound-based estimation of right atrial pressure (RAP), but the availability of this diagnostic modality is limited by the need for experienced physicians to accurately interpret these scans.

OBJECTIVES

We sought to evaluate whether machine learning can accurately estimate echocardiogram-measured RAP.

METHODS

We developed fully automated deep learning models for identifying inferior vena cava scans with rapid inspiration in echocardiogram studies and estimating RAP from those scans. The RAP estimation model was trained and evaluated using 15,828 ultrasound videos of the inferior vena cava and coupled cardiologist-assessed RAP estimates as well as 319 RAP measurements from right heart catheterization.

RESULTS

Our model agreed with cardiologist estimates 80.3% of the time (area under the receiver-operating characteristic of 0.844) in a test data set, at the upper end of interoperator agreement rates found in the literature of 70 to 75%. Our model's RAP estimates were statistically indistinguishable from cardiologists' ultrasound-based RAP estimates ( = 0.98) when compared against the gold standard of right heart catheterization RAP measurements in a subset of patients. Our model also generalized well to an external data set of echocardiograms from a different institution (area under the receiver-operating characteristic of 0.854 compared to cardiologist RAP estimates).

CONCLUSIONS

Machine learning is capable of accurately and robustly interpreting RAP from echocardiogram videos. This algorithm could be used to perform automated assessments of intravascular volume status.

摘要

背景

早期识别容量超负荷对心力衰竭患者至关重要。容量超负荷若能早期发现,通常易于治疗,但如果未被识别并任其发展,则会导致严重的发病率。血管内容量状态可通过基于超声的右心房压力(RAP)估计来评估,但这种诊断方式的可用性受到限制,因为需要有经验的医生才能准确解读这些扫描结果。

目的

我们试图评估机器学习是否能够准确估计超声心动图测量的RAP。

方法

我们开发了全自动深度学习模型,用于在超声心动图研究中识别吸气快速时的下腔静脉扫描,并从这些扫描中估计RAP。RAP估计模型使用15828个下腔静脉超声视频以及心脏病专家评估的RAP估计值和来自右心导管检查的319个RAP测量值进行训练和评估。

结果

在一个测试数据集中,我们的模型在80.3%的时间内与心脏病专家的估计一致(受试者工作特征曲线下面积为0.844),处于文献中报道的70%至75%的操作者间一致率的上限。在一部分患者中,与右心导管检查RAP测量的金标准相比,我们模型的RAP估计值与心脏病专家基于超声的RAP估计值在统计学上无显著差异(r = 0.98)。我们的模型对来自不同机构的超声心动图外部数据集也具有良好的泛化能力(与心脏病专家的RAP估计相比,受试者工作特征曲线下面积为0.854)。

结论

机器学习能够准确且稳健地从超声心动图视频中解读RAP。该算法可用于对血管内容量状态进行自动评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c317/11450965/f0382860cad3/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验