Burenkov Ivan A, Annafianto N Fajar R, Jabir M V, Battou Abdella, Polyakov Sergey V
Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA.
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
AVS Quantum Sci. 2023;5(3). doi: 10.1116/5.0164396.
Because noise is inherent to all measurements, optical communication requires error identification and correction to protect and recover user data. Yet, error correction, routinely used in classical receivers, has not been applied to receivers that take advantage of quantum measurement. Here, we show how information uniquely available in a quantum measurement can be employed for efficient error correction. Our quantum-enabled forward error correction protocol operates on quadrature phase shift keying (QPSK) and achieves more than 80 dB error suppression compared to the raw symbol error rate and approximately 40 dB improvement of symbol error rates beyond the QPSK classical limit. With a symbol error rate below 10 for just 11 photons per bit, this approach enables reliable use of quantum receivers for ultra-low power optical communications. Limiting optical power improves the information capacity of optical links and enables scalable net.
由于噪声是所有测量中固有的,光通信需要进行错误识别和纠正,以保护和恢复用户数据。然而,经典接收器中常规使用的纠错方法尚未应用于利用量子测量的接收器。在此,我们展示了如何将量子测量中唯一可用的信息用于高效纠错。我们的量子增强前向纠错协议在正交相移键控(QPSK)上运行,与原始符号错误率相比,实现了超过80 dB的错误抑制,并且在符号错误率方面比QPSK经典极限提高了约40 dB。对于每位仅11个光子的情况,符号错误率低于10,这种方法能够可靠地将量子接收器用于超低功耗光通信。限制光功率可提高光链路的信息容量并实现可扩展网络。