Suppr超能文献

共识聚类分析识别与铁死亡相关的患者聚类,并基于缺血性心肌病中铁死亡相关基因构建预测特征。

Consensus Clustering Analysis Identifies Ferroptosis-Related Patient Clusters and Predictive Signature Construction Based on Ferroptosis-Related Genes in Ischemic Cardiomyopathy.

作者信息

Guo Shuai, Gong Zhaoting, Sun Xiaona, Gao Fei, Li Xiang, Zu Xiaolin, Qu Chao, Zhang Hongliang, Gao Hai

机构信息

Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.

Department of Cardiology, Laizhou City People's Hospital, Laizhou, People's Republic of China.

出版信息

J Inflamm Res. 2024 Sep 30;17:6797-6814. doi: 10.2147/JIR.S475645. eCollection 2024.

Abstract

BACKGROUND

Ischemic cardiomyopathy (ICM) significantly contributes to global disease burden, while the role of ferroptosis in ICM remains underexplored.

METHODS

We identified differentially expressed ferroptosis-related genes (DEFRGs) by analyzing the GSE57338 dataset and cross-referencing with FerrDb. Consensus clustering was then used to identify ferroptosis-associated clusters within the ICM samples. A ferroptosis-specific predictive signature was developed using the least absolute shrinkage and selection operator (LASSO) method and validated with the GSE5406 dataset. Additionally, quantitative real-time PCR (qRT-PCR) experiments were performed to validate the 11 feature genes in a rat ICM model.

RESULTS

We identified 15 DEFRGs in GSE57338, which distinguished two patient clusters with distinct ferroptosis gene expression, pathway enrichment profiles, and metabolic characteristics. All DEFRGs were upregulated in cluster 2. Potential therapeutic targets were also identified for different ICM patient clusters. The 11-gene predictive signature (TXNRD1, STEAP3, STAT3, SCL2A1, PLIN2, NQO1, NNMT, IL33, ENPP2, ARRDC3, ALOX5) showed robust predictive power in both training and validation sets. High-risk patients exhibited increased infiltration of CD8+ T cells, CD4+ naïve T cells, M0/M1 macrophages, and resting mast cells, along with significant enrichment in epithelial mesenchymal transition and interferon responses. Low-risk patients had higher infiltration of regulatory T cells and monocytes. Results of qPCR analysis confirmed the bioinformatic analysis, validating the expression of the 11 feature genes in the rat ICM model.

CONCLUSION

We identified two ferroptosis-related clusters in ICM patients and developed a predictive signature based on ferroptosis-related genes. Our findings highlight the importance of ferroptosis in ICM and offer new insights for its diagnosis and treatment.

摘要

背景

缺血性心肌病(ICM)对全球疾病负担有重大影响,而铁死亡在ICM中的作用仍未得到充分研究。

方法

我们通过分析GSE57338数据集并与FerrDb交叉引用,鉴定了差异表达的铁死亡相关基因(DEFRGs)。然后使用一致性聚类来识别ICM样本中的铁死亡相关簇。使用最小绝对收缩和选择算子(LASSO)方法开发了铁死亡特异性预测特征,并在GSE5406数据集上进行了验证。此外,进行了定量实时PCR(qRT-PCR)实验,以验证大鼠ICM模型中的11个特征基因。

结果

我们在GSE57338中鉴定了15个DEFRGs,它们区分了两个具有不同铁死亡基因表达、通路富集谱和代谢特征的患者簇。所有DEFRGs在簇2中均上调。还为不同的ICM患者簇确定了潜在的治疗靶点。11基因预测特征(TXNRD1、STEAP3、STAT3、SCL2A1、PLIN2、NQO1、NNMT、IL33、ENPP2、ARRDC3、ALOX5)在训练集和验证集中均显示出强大的预测能力。高风险患者表现出CD8 + T细胞、CD4 + 初始T细胞、M0/M1巨噬细胞和静止肥大细胞的浸润增加,同时上皮间质转化和干扰素反应显著富集。低风险患者的调节性T细胞和单核细胞浸润较高。qPCR分析结果证实了生物信息学分析,验证了大鼠ICM模型中11个特征基因的表达。

结论

我们在ICM患者中鉴定了两个铁死亡相关簇,并基于铁死亡相关基因开发了一种预测特征。我们的研究结果突出了铁死亡在ICM中的重要性,并为其诊断和治疗提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2096/11451430/4077ee137d58/JIR-17-6797-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验