Suppr超能文献

生物信息学辅助的杀伤细胞免疫球蛋白样受体(KIR)基因注释工具。

Biologically-informed Killer cell immunoglobulin-like receptor (KIR) gene annotation tool.

作者信息

Ford Michael K B, Hari Ananth, Zhou Qinghui, Numanagić Ibrahim, Sahinalp S Cenk

机构信息

National Cancer Institute, NIH, Bethesda, MD, USA.

University of Maryland, College Park, MD, USA.

出版信息

bioRxiv. 2024 Aug 22:2024.08.13.607835. doi: 10.1101/2024.08.13.607835.

Abstract

Natural killer (NK) cells are essential components of the innate immune system, with their activity significantly regulated by Killer cell Immunoglobulin-like Receptors (KIRs). The diversity and structural complexity of KIR genes present significant challenges for accurate genotyping, essential for understanding NK cell functions and their implications in health and disease. Traditional genotyping methods struggle with the variable nature of KIR genes, leading to inaccuracies that can impede immunogenetic research. These challenges extend to high-quality phased assemblies, which have been recently popularized by the Human Pangenome Consortium. This paper introduces BAKIR (Biologically-informed Annotator for KIR locus), a tailored computational tool designed to overcome the challenges of KIR genotyping and annotation on high-quality, phased genome assemblies. BAKIR aims to enhance the accuracy of KIR gene annotations by structuring its annotation pipeline around identifying key functional mutations, thereby improving the identification and subsequent relevance of gene and allele calls. It uses a multi-stage mapping, alignment, and variant calling process to ensure high-precision gene and allele identification, while also maintaining high recall for sequences that are significantly mutated or truncated relative to the known allele database. BAKIR has been evaluated on a subset of the HPRC assemblies, where BAKIR was able to improve many of the associated annotations and call novel variants. BAKIR is freely available on GitHub, offering ease of access and use through multiple installation methods, including pip, conda, and singularity container, and is equipped with a user-friendly command-line interface, thereby promoting its adoption in the scientific community.

摘要

自然杀伤(NK)细胞是先天免疫系统的重要组成部分,其活性受到杀伤细胞免疫球蛋白样受体(KIR)的显著调控。KIR基因的多样性和结构复杂性给准确基因分型带来了重大挑战,而准确基因分型对于理解NK细胞功能及其在健康和疾病中的意义至关重要。传统的基因分型方法难以应对KIR基因的可变性质,导致可能阻碍免疫遗传学研究的不准确结果。这些挑战也延伸到了高质量的分阶段组装,而这最近已被人类泛基因组联盟推广开来。本文介绍了BAKIR(KIR基因座的生物信息注释器),这是一种专门设计的计算工具,旨在克服在高质量、分阶段的基因组组装上进行KIR基因分型和注释的挑战。BAKIR旨在通过围绕识别关键功能突变构建其注释管道来提高KIR基因注释的准确性,从而改善基因和等位基因调用的识别及其后续相关性。它使用多阶段映射、比对和变异调用过程来确保高精度的基因和等位基因识别,同时对于相对于已知等位基因数据库有显著突变或截短的序列也保持高召回率。BAKIR已在HPRC组装的一个子集中进行了评估,在该子集中BAKIR能够改进许多相关注释并识别新的变异。BAKIR可在GitHub上免费获取,通过包括pip、conda和奇点容器在内的多种安装方法易于访问和使用,并且配备了用户友好的命令行界面,从而促进其在科学界的采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d989/11451589/e0b38f41ad7f/nihpp-2024.08.13.607835v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验