Park Beomhee, Choi Eunsuk, Byun Garan, Choe Geonoh, Hong Seong Woo, Yang Hyeonji, Lim Jaeman, Lee Seung-Beck, Jung Yei Hwan
Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
Department of Artificial Intelligence Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Oct 7. doi: 10.1021/acsami.4c11871.
Electrovibration haptic technology, which provides tactile feedback to users by swiping the surface with a finger via electroadhesion, shows promise as a haptic feedback platform for displays owing to its simple structure, ease of integration with existing displays, and simple driving mechanism. However, without electrical grounding on a user's body, the frequent requirement of a high driving voltage near 50 V limits the use of electrovibration haptic technology in practical display applications. This study introduces materials and fabrication strategies that considerably reduce the driving voltage. We used a transparent poly(vinylidene fluoride) (PVDF) thin film deposited on transparent conductive polymers through a simple spin-coating process, thereby enabling easy integration with existing display technologies. The high dielectric constant characteristics of PVDF enabled the production of tactile cues at low voltages (approximately 15 V), which are within the safety limits of common electronics. We verified the feasibility of our electrovibration haptic feedback system on the basis of the absolute threshold voltage through two-alternative forced choice psychological tests. The results revealed that the PVDF dielectric layer exhibited a relatively lower absolute threshold than commonly used polymer films, which possess a relatively lower dielectric constant. To validate the tactile attributes, a Likert five-point scale survey was conducted, considering flat, concave, and convex curvatures. The results indicated that our haptic device can render diverse surface textures, such as "hairy" and "groovy", on the fingertips through the control of applied pulse width modulated voltage signals.
电振动触觉技术通过电粘附作用,利用手指在表面滑动为用户提供触觉反馈。由于其结构简单、易于与现有显示器集成以及驱动机制简便,该技术有望成为一种用于显示器的触觉反馈平台。然而,在用户身体未接地的情况下,频繁需要接近50V的高驱动电压限制了电振动触觉技术在实际显示应用中的使用。本研究介绍了能大幅降低驱动电压的材料和制造策略。我们通过简单的旋涂工艺,将透明聚偏二氟乙烯(PVDF)薄膜沉积在透明导电聚合物上,从而便于与现有显示技术集成。PVDF的高介电常数特性使得在低电压(约15V)下就能产生触觉提示,该电压在普通电子产品的安全范围内。我们通过二选一强制选择心理测试,基于绝对阈值电压验证了我们的电振动触觉反馈系统的可行性。结果表明,PVDF介电层展现出比常用聚合物薄膜相对更低的绝对阈值,常用聚合物薄膜的介电常数相对较低。为了验证触觉属性,我们进行了李克特五点量表调查,考虑了平坦、凹面和凸面曲率。结果表明,我们的触觉设备可以通过控制施加的脉宽调制电压信号,在指尖呈现出各种表面纹理,如“毛茸茸的”和“有凹槽的”。