Suppr超能文献

纳入第二掌骨皮质指数的类风湿关节炎骨质疏松预测模型:基于 KURAMA 队列数据开发的外部验证机器学习模型。

Prediction models incorporating second metacarpal cortical index for osteoporosis in rheumatoid arthritis: Externally validated machine learning models developed using data from the KURAMA cohort.

机构信息

Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Department of Orthopaedic Surgery, Kobe City Medical Center General Hospital, Kobe, Japan.

出版信息

Int J Rheum Dis. 2024 Oct;27(10):e15358. doi: 10.1111/1756-185X.15358.

Abstract

OBJECTIVE

Osteoporosis and osteopenia are significant concerns in rheumatoid arthritis (RA), predisposing patients to fragility fractures. While dual-energy X-ray absorptiometry (DXA) is the gold standard for bone mineral density (BMD) assessment, simpler screening tools are needed. This study aims to assess the correlation between the second metacarpal cortical index (2MCI) and BMD in RA patients, and to evaluate machine learning (ML) models utilizing 2MCI and clinical parameters for predicting osteoporosis/osteopenia presence and BMD.

METHODS

Data from the KURAMA cohort (n = 302) and an external validation cohort (n = 32) were analyzed. BMD in the hip and forearm was obtained using DXA and 2MCI was calculated from plain hand X-ray. ML models were trained to predict osteoporosis/osteopenia presence and BMD using 2MCI and clinical variables and validated using external cohort.

RESULTS

2MCI correlated significantly with hip and forearm BMD. ML models incorporating 2MCI and other clinical parameters showed good performance in predicting osteoporosis/osteopenia presence and BMD. External validation demonstrated the generalizability of the models.

CONCLUSION

ML models utilizing 2MCI and clinical parameters show promise for osteoporosis screening in RA patients.

摘要

目的

骨质疏松症和骨量减少是类风湿关节炎(RA)的严重问题,使患者易发生脆性骨折。双能 X 射线吸收法(DXA)是骨密度(BMD)评估的金标准,但需要更简单的筛查工具。本研究旨在评估 RA 患者第二掌骨皮质指数(2MCI)与 BMD 的相关性,并评估利用 2MCI 和临床参数的机器学习(ML)模型预测骨质疏松/骨量减少的存在和 BMD。

方法

分析了 KURAMA 队列(n=302)和外部验证队列(n=32)的数据。使用 DXA 获得髋部和前臂的 BMD,并从手部 X 光片中计算 2MCI。使用 2MCI 和临床变量训练 ML 模型来预测骨质疏松/骨量减少的存在和 BMD,并使用外部队列进行验证。

结果

2MCI 与髋部和前臂 BMD 显著相关。纳入 2MCI 和其他临床参数的 ML 模型在预测骨质疏松/骨量减少的存在和 BMD 方面表现出良好的性能。外部验证证明了模型的泛化能力。

结论

利用 2MCI 和临床参数的 ML 模型在 RA 患者的骨质疏松症筛查中具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验