Zhang Jia-Xin, Zhang Hao-Kai, You Yi-Zhuang, Weng Zheng-Yu
Institute for Advanced Study, <a href="https://ror.org/03cve4549">Tsinghua University</a>, Beijing 100084, China.
French American Center for Theoretical Science, CNRS, KITP, Santa Barbara, California 93106-4030, USA.
Phys Rev Lett. 2024 Sep 20;133(12):126501. doi: 10.1103/PhysRevLett.133.126501.
The recent discovery of high-temperature superconductivity in La_{3}Ni_{2}O_{7} offers a fresh platform for exploring unconventional pairing mechanisms. Starting with the basic argument that the electrons in d_{z^{2}} orbitals nearly form local moments, we examine the effect of the Hubbard interaction U on the binding strength of Cooper pairs based on a single-orbital bilayer model with intralayer hopping t_{∥} and interlayer superexchange J_{⊥}. By extensive density matrix renormalization group calculations, we observe a remarkable enhancement in binding energy as much as 10-20 times larger with U/t_{∥} increasing from 0 to 12 at J_{⊥}/t_{∥}∼1. We demonstrate that such a substantial enhancement stems from a kinetic-energy-driven mechanism. Specifically, a Z_{2} Berry phase will emerge at large U due to the Hilbert space restriction (Mottness), which strongly suppresses the mobility of single particle propagation as compared to U=0. However, the kinetic energy of the electrons (holes) can be greatly restored by forming an interlayer spin-singlet pairing, which naturally results in a superconducting state even for relatively small J_{⊥}. An effective hard-core bosonic model is further proposed to estimate the superconducting transition temperature at the mean-field level.
最近在La₃Ni₂O₇中发现高温超导性,为探索非常规配对机制提供了一个新的平台。从dₓ²轨道中的电子几乎形成局域磁矩这一基本观点出发,我们基于具有层内跳跃t₁和层间超交换J⊥的单轨道双层模型,研究了哈伯德相互作用U对库珀对结合强度的影响。通过广泛的密度矩阵重整化群计算,我们观察到在J⊥/t₁≈1时,随着U/t₁从0增加到12,结合能显著增强,增大了10到20倍。我们证明这种显著增强源于动能驱动机制。具体来说,由于希尔伯特空间限制(莫特性),在大U时会出现一个Z₂贝里相位,与U = 0相比,这强烈抑制了单粒子传播的迁移率。然而,通过形成层间自旋单重态配对,电子(空穴)的动能可以得到极大恢复,这自然导致即使对于相对较小的J⊥也会出现超导态。进一步提出了一个有效的硬核玻色子模型,以在平均场水平估计超导转变温度。