Suppr超能文献

NanoCore:基于核心基因组的细菌基因组监测和爆发检测,用于从 Nanopore 和 Illumina 数据的医疗保健设施中。

NanoCore: core-genome-based bacterial genomic surveillance and outbreak detection in healthcare facilities from Nanopore and Illumina data.

机构信息

Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.

出版信息

mSystems. 2024 Nov 19;9(11):e0108024. doi: 10.1128/msystems.01080-24. Epub 2024 Oct 7.

Abstract

UNLABELLED

Genomic surveillance enables the early detection of pathogen transmission in healthcare facilities and contributes to the reduction of substantial patient harm. Fast turnaround times, flexible multiplexing, and low capital requirements make Nanopore sequencing well suited for genomic surveillance purposes; the analysis of Nanopore data, however, can be challenging. We present NanoCore, a user-friendly method for Nanopore-based genomic surveillance in healthcare facilities, enabling the calculation and visualization of cgMLST-like (core-genome multilocus sequence typing) sample distances directly from unassembled Nanopore reads. NanoCore implements a mapping, variant calling, and multilevel filtering strategy and also supports the analysis of Illumina data. We validated NanoCore on two 24-isolate data sets of methicillin-resistant (MRSA) and vancomycin-resistant (VRE). In the Nanopore-only mode, NanoCore-based pairwise distances between closely related isolates were near-identical to Illumina-based SeqSphere distances, a gold standard commercial method (average differences of 0.75 and 0.81 alleles for MRSA and VRE; sd = 0.98 and 1.00), and gave an identical clustering into closely related and non-closely related isolates. In the "hybrid" mode, in which only Nanopore data are used for some isolates and only Illumina data for others, increased average pairwise isolate distance differences were observed (average differences of 3.44 and 1.95 for MRSA and VRE, respectively; sd = 2.76 and 1.34), while clustering results remained identical. NanoCore is computationally efficient (<15 hours of wall time for the analysis of a 24-isolate data set on a workstation), available as free software, and supports installation via conda. In conclusion, NanoCore enables the effective use of the Nanopore technology for bacterial pathogen surveillance in healthcare facilities.

IMPORTANCE

Genomic surveillance involves sequencing the genomes and measuring the relatedness of bacteria from different patients or locations in the same healthcare facility, enabling an improved understanding of pathogen transmission pathways and the detection of "silent" outbreaks that would otherwise go undetected. It has become an indispensable tool for the detection and prevention of healthcare-associated infections and is routinely applied by many healthcare institutions. The earlier an outbreak or transmission chain is detected, the better; in this context, the Oxford Nanopore sequencing technology has important potential advantages over traditionally used short-read sequencing technologies, because it supports "real-time" data generation and the cost-effective "on demand" sequencing of small numbers of bacterial isolates. The analysis of Nanopore sequencing data, however, can be challenging. We present NanoCore, a user-friendly software for genomic surveillance that works directly based on Nanopore sequencing reads in FASTQ format, and demonstrate that its accuracy is equivalent to traditional gold standard short read-based analyses.

摘要

未加标签

基因组监测使医疗机构中病原体传播的早期检测成为可能,并有助于减少大量患者的伤害。快速周转时间、灵活的多重检测和低资本要求使纳米孔测序非常适合基因组监测目的;然而,纳米孔数据的分析可能具有挑战性。我们提出了 NanoCore,这是一种用于医疗机构中基于纳米孔的基因组监测的用户友好方法,能够直接从未组装的纳米孔读取数据中计算和可视化 cgMLST 样(核心基因组多位点序列分型)样本距离。NanoCore 实现了映射、变异调用和多级过滤策略,还支持 Illumina 数据的分析。我们在两个 24 株分离株的耐甲氧西林金黄色葡萄球菌(MRSA)和万古霉素耐药肠球菌(VRE)数据集上验证了 NanoCore。在仅纳米孔模式下,密切相关分离株之间基于 NanoCore 的成对距离与基于 Illumina 的 SeqSphere 距离非常接近(MRSA 和 VRE 的平均差异为 0.75 和 0.81 个等位基因;标准差为 0.98 和 1.00),并对密切相关和非密切相关的分离株进行了相同的聚类。在“混合”模式下,仅对一些分离株使用纳米孔数据,而对其他分离株仅使用 Illumina 数据,观察到平均成对分离株距离差异增加(MRSA 和 VRE 的平均差异分别为 3.44 和 1.95;标准差为 2.76 和 1.34),而聚类结果保持不变。NanoCore 计算效率高(在工作站上分析 24 株分离株的数据集用时不到 15 小时),作为免费软件提供,并且支持通过 conda 进行安装。总之,NanoCore 使纳米孔技术能够有效地用于医疗机构中的细菌病原体监测。

重要性

基因组监测涉及对来自同一医疗机构不同患者或位置的细菌进行基因组测序和测量其相关性,从而更好地了解病原体传播途径,并检测到 otherwise go undetected(否则会未被发现)的“静默”爆发。它已成为检测和预防医疗机构相关感染的不可或缺的工具,并且许多医疗机构都在常规应用。越早检测到爆发或传播链,越好;在这种情况下,与传统使用的短读测序技术相比,牛津纳米孔测序技术具有重要的潜在优势,因为它支持“实时”数据生成和具有成本效益的“按需”对少量细菌分离株进行测序。然而,纳米孔测序数据的分析可能具有挑战性。我们提出了 NanoCore,这是一种用于基因组监测的用户友好软件,它直接基于 FASTQ 格式的纳米孔测序读数工作,并证明其准确性与传统的基于短读的金标准分析相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0731/11575142/3b6c2d7a7b92/msystems.01080-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验