State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China.
Shenzhen Research Institute, Shandong University, Shenzhen, China.
mBio. 2024 Nov 13;15(11):e0199424. doi: 10.1128/mbio.01994-24. Epub 2024 Oct 7.
Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria.
Gene duplication events presumably occur in , which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.
基因复制事件在进化过程中普遍发生,而控制复制基因丢失或保留的机制大多难以捉摸。我们的基因组扫描分析显示,引发因子(TF)是唯一一种与细菌核糖体相关的分子伴侣,除了极少数拥有两个或更多拷贝的细菌外,几乎在所有细菌中都是单一拷贝的。然而,即使在这些例外情况下,也只有一个完整的 TF 拷贝存在,而其他同源物则缺少包含保守核糖体结合位点(RBS)基序的 N 端结构域。一致地,我们证明了 N 端完整 TF 蛋白的过表达对细胞是有害的,可以通过去除 N 端结构域来挽救。我们的研究结果还表明,TF 的过表达会导致蛋白质生产力下降和蛋白质组谱变化,这是由于其特征性的核糖体结合和分子伴侣活性。此外,这些在具有多个 TF 同源物的细菌中缺乏 N 端的 TF 同源物通过亚功能化来分配 TF 的功能。我们的研究结果表明,TF 受到来自其自身内在功能的剂量限制,这可能会导致细菌中复制基因的进化和命运。
基因复制事件可能发生在 ,它编码与核糖体相关的分子伴侣触发因子(TF)。然而,TF 在几乎所有细菌中都是单一复制的,这些具有多个 TF 同源物的例外情况总是只保留一个完整的拷贝,而其他同源物则缺乏 N 端结构域。在这里,我们揭示了细菌中 TF 副本的进化和命运的方式和机制。我们发现,TF 副本的突变丢失或保留到亚/新功能化与 N 端完整 TF 的剂量限制有关。TF 的剂量限制归因于其特征性的核糖体结合和底物保持活性,导致蛋白质生产力下降和细胞蛋白质组谱变化。