Suppr超能文献

肿瘤侵袭趋化模型的高精度保正性有限差分近似

High-Accuracy Positivity-Preserving Finite Difference Approximations of the Chemotaxis Model for Tumor Invasion.

作者信息

Zhang Lin, Peng Jigen, Ge Yongbin, Li Haiyang, Tang Yuchao

机构信息

School of Mathematics and Information Science, Guangzhou University, Guangzhou, P.R. China.

Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, P.R. China.

出版信息

J Comput Biol. 2024 Dec;31(12):1224-1258. doi: 10.1089/cmb.2023.0316. Epub 2024 Oct 7.

Abstract

Numerical simulation of the complex evolution process for tumor invasion plays an extremely important role in-depth exploring the bio-taxis phenomena of tumor growth and metastasis. In view of the fact that low-accuracy numerical methods often have large errors and low resolution, very refined grids have to be used if we want to get high-resolution simulating results, which leads to a great deal of computational cost. In this paper, we are committed to developing a class of high-accuracy positivity-preserving finite difference methods to solve the chemotaxis model for tumor invasion. First, two unconditionally stable implicit compact difference schemes for solving the model are proposed; second, the local truncation errors of the new schemes are analyzed, which show that they have second-order accuracy in time and fourth-order accuracy in space; third, based on the proposed schemes, the high-accuracy numerical integration idea of binary functions is employed to structure a linear compact weighting formula that guarantees fourth-order accuracy and nonnegative, and then a positivity-preserving and time-marching algorithm is established; and finally, the accuracy, stability, and positivity-preserving of the proposed methods are verified by several numerical experiments, and the evolution phenomena of tumor invasion over time are numerically simulated and analyzed.

摘要

肿瘤侵袭复杂演化过程的数值模拟对于深入探究肿瘤生长和转移的生物趋化现象起着极其重要的作用。鉴于低精度数值方法往往具有较大误差和低分辨率,如果我们想要获得高分辨率的模拟结果,就必须使用非常精细的网格,这会导致大量的计算成本。在本文中,我们致力于开发一类高精度保正性有限差分方法来求解肿瘤侵袭的趋化模型。首先,提出了两种求解该模型的无条件稳定隐式紧致差分格式;其次,分析了新格式的局部截断误差,结果表明它们在时间上具有二阶精度,在空间上具有四阶精度;第三,基于所提出的格式,采用二元函数的高精度数值积分思想构造了一个保证四阶精度且非负的线性紧致加权公式,进而建立了一种保正性时间推进算法;最后,通过若干数值实验验证了所提方法的精度、稳定性和保正性,并对肿瘤侵袭随时间的演化现象进行了数值模拟和分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验