Suppr超能文献

SHREC:一个利用大语言模型推进下一代计算表型分析的框架。

SHREC: A Framework for Advancing Next-Generation Computational Phenotyping with Large Language Models.

作者信息

Pungitore Sarah, Yadav Shashank, Douglas Molly, Mosier Jarrod, Subbian Vignesh

机构信息

Program in Applied Mathematics, The University of Arizona, Tucson, AZ.

College of Engineering, The University of Arizona, Tucson, AZ.

出版信息

ArXiv. 2025 Jul 17:arXiv:2506.16359v3.

Abstract

OBJECTIVE

Computational phenotyping is a central informatics activity with resulting cohorts supporting a wide variety of applications. However, it is time-intensive because of manual data review, limited automation, and difficulties in adapting algorithms across sources. Since LLMs have demonstrated promising capabilities for text classification, comprehension, and generation, we posit they will perform well at repetitive manual review tasks traditionally performed by human experts. To support next-generation computational phenotyping methods, we developed SHREC, a framework for comprehensive integration of LLMs into end-to-end phenotyping pipelines.

METHODS

We applied and tested three lightweight LLMs (Gemma2 27 billion, Mistral Small 24 billion, and Phi-4 14 billion) to classify concepts and phenotype patients using previously developed phenotypes for ARF respiratory support therapies.

RESULTS

All models performed well on concept classification, with the best model (Mistral) achieving an AUROC of 0.896 across all relevant concepts. For phenotyping, models demonstrated near-perfect specificity for all phenotypes, and the top-performing model (Mistral) reached an average AUROC of 0.853 for single-therapy phenotypes, despite lower performance on multi-therapy phenotypes.

CONCLUSION

Current lightweight LLMs can feasibly assist researchers with resource-intensive phenotyping tasks such as manual data review. There are several advantages of LLMs that support their application to computational phenotyping, such as their ability to adapt to new tasks with prompt engineering alone and their ability to incorporate raw EHR data. Future steps to advance next-generation phenotyping methods include determining optimal strategies for integrating biomedical data, exploring how LLMs reason, and advancing generative model methods.

摘要

目的

计算表型分析是一项核心的信息学活动,所产生的队列支持广泛的应用。然而,由于人工数据审查、自动化程度有限以及跨数据源调整算法存在困难,这一过程耗时较长。鉴于大型语言模型(LLMs)在文本分类、理解和生成方面已展现出有前景的能力,我们认为它们在传统上由人类专家执行的重复性人工审查任务中会表现出色。为了支持下一代计算表型分析方法,我们开发了SHREC,这是一个将大型语言模型全面集成到端到端表型分析流程中的框架。

方法

我们应用并测试了三个轻量级大型语言模型(270亿参数的Gemma2、240亿参数的Mistral Small和140亿参数的Phi-4),使用先前开发的急性呼吸衰竭(ARF)呼吸支持疗法的表型来对概念进行分类并对患者进行表型分析。

结果

所有模型在概念分类方面表现良好,最佳模型(Mistral)在所有相关概念上的曲线下面积(AUROC)达到0.896。对于表型分析,模型对所有表型都表现出近乎完美的特异性,尽管在多疗法表型上表现较差,但表现最佳的模型(Mistral)在单疗法表型上的平均AUROC达到0.853。

结论

当前的轻量级大型语言模型能够切实协助研究人员完成诸如人工数据审查等资源密集型表型分析任务。大型语言模型有几个优势支持其应用于计算表型分析,例如它们仅通过提示工程就能适应新任务的能力以及整合原始电子健康记录(EHR)数据的能力。推进下一代表型分析方法的未来步骤包括确定整合生物医学数据的最佳策略、探索大型语言模型的推理方式以及推进生成模型方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74f4/12360335/ce4d733ff973/nihpp-2506.16359v4-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验