Microsoft Research Asia, Beijing, China.
Peking University, Beijing, China.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac409.
Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.
预训练语言模型在医学领域越来越受到关注,这是受到它们在一般自然语言领域取得巨大成功的启发。在一般语言领域的两种主要预训练语言模型分支中,即 BERT(及其变体)和 GPT(及其变体),前者在医学领域得到了广泛的研究,例如 BioBERT 和 PubMedBERT。虽然它们在各种判别性的下游医学自然语言处理任务上取得了巨大的成功,但缺乏生成能力限制了它们的应用范围。在本文中,我们提出了 BioGPT,这是一个基于大规模生物医学文献预训练的领域特定的生成性 Transformer 语言模型。我们在六个医学自然语言处理任务上评估了 BioGPT,并证明我们的模型在大多数任务上优于以前的模型。特别是,我们在 BC5CDR、KD-DTI 和 DDI 端到端关系抽取任务上分别获得了 44.98%、38.42%和 40.76%的 F1 分数,在 PubMedQA 上获得了 78.2%的准确率,创造了新的记录。我们对文本生成的案例研究进一步证明了 BioGPT 在生物医学文献上的优势,能够为生物医学术语生成流畅的描述。
Brief Bioinform. 2022-11-19
Bioinformatics. 2020-2-15
Bioinformatics. 2022-1-12
BMC Bioinformatics. 2023-7-19
BMC Bioinformatics. 2022-4-4
Int J Environ Res Public Health. 2022-5-12
Methods Mol Biol. 2022
AMIA Jt Summits Transl Sci Proc. 2024-5-31
Front Pharmacol. 2025-8-20
Nat Lang Process Inf Syst. 2026
Nat Lang Process Inf Syst. 2026
Front Public Health. 2025-7-18
Int J Mol Sci. 2025-7-16