文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BioGPT:用于生物医学文本生成和挖掘的生成式预训练转换器。

BioGPT: generative pre-trained transformer for biomedical text generation and mining.

机构信息

Microsoft Research Asia, Beijing, China.

Peking University, Beijing, China.

出版信息

Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac409.


DOI:10.1093/bib/bbac409
PMID:36156661
Abstract

Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.

摘要

预训练语言模型在医学领域越来越受到关注,这是受到它们在一般自然语言领域取得巨大成功的启发。在一般语言领域的两种主要预训练语言模型分支中,即 BERT(及其变体)和 GPT(及其变体),前者在医学领域得到了广泛的研究,例如 BioBERT 和 PubMedBERT。虽然它们在各种判别性的下游医学自然语言处理任务上取得了巨大的成功,但缺乏生成能力限制了它们的应用范围。在本文中,我们提出了 BioGPT,这是一个基于大规模生物医学文献预训练的领域特定的生成性 Transformer 语言模型。我们在六个医学自然语言处理任务上评估了 BioGPT,并证明我们的模型在大多数任务上优于以前的模型。特别是,我们在 BC5CDR、KD-DTI 和 DDI 端到端关系抽取任务上分别获得了 44.98%、38.42%和 40.76%的 F1 分数,在 PubMedQA 上获得了 78.2%的准确率,创造了新的记录。我们对文本生成的案例研究进一步证明了 BioGPT 在生物医学文献上的优势,能够为生物医学术语生成流畅的描述。

相似文献

[1]
BioGPT: generative pre-trained transformer for biomedical text generation and mining.

Brief Bioinform. 2022-11-19

[2]
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.

Bioinformatics. 2020-2-15

[3]
BioVAE: a pre-trained latent variable language model for biomedical text mining.

Bioinformatics. 2022-1-12

[4]
Evaluation of GPT and BERT-based models on identifying proteinprotein interactions in biomedical text.

ArXiv. 2023-12-13

[5]
Bioformer: an efficient transformer language model for biomedical text mining.

ArXiv. 2023-2-3

[6]
Leveraging pre-trained language models for mining microbiome-disease relationships.

BMC Bioinformatics. 2023-7-19

[7]
Investigation of improving the pre-training and fine-tuning of BERT model for biomedical relation extraction.

BMC Bioinformatics. 2022-4-4

[8]
Discovering Thematically Coherent Biomedical Documents Using Contextualized Bidirectional Encoder Representations from Transformers-Based Clustering.

Int J Environ Res Public Health. 2022-5-12

[9]
BioBERT and Similar Approaches for Relation Extraction.

Methods Mol Biol. 2022

[10]
A Study of Biomedical Relation Extraction Using GPT Models.

AMIA Jt Summits Transl Sci Proc. 2024-5-31

引用本文的文献

[1]
Multimodal integration strategies for clinical application in oncology.

Front Pharmacol. 2025-8-20

[2]
scELMo: Embeddings from Language Models are Good Learners for Single-cell Data Analysis.

bioRxiv. 2025-8-23

[3]
CARE-AD: a multi-agent large language model framework for Alzheimer's disease prediction using longitudinal clinical notes.

NPJ Digit Med. 2025-8-24

[4]
Comparison of pipelines, seq2seq models, and LLMs for rare disease information extraction.

Nat Lang Process Inf Syst. 2026

[5]
How important is domain-specific language model pretraining and instruction finetuning for biomedical relation extraction?

Nat Lang Process Inf Syst. 2026

[6]
Pre-operative T-stage discrimination in gallbladder cancer using machine learning and DeepSeek-R1.

Front Oncol. 2025-8-1

[7]
Federated Knowledge Retrieval Elevates Large Language Model Performance on Biomedical Benchmarks.

bioRxiv. 2025-8-2

[8]
Drug repurposing for Alzheimer's disease using a graph-of-thoughts based large language model to infer drug-disease relationships in a comprehensive knowledge graph.

BioData Min. 2025-8-5

[9]
Ethical AI in medical text generation: balancing innovation with privacy in public health.

Front Public Health. 2025-7-18

[10]
Digital Alchemy: The Rise of Machine and Deep Learning in Small-Molecule Drug Discovery.

Int J Mol Sci. 2025-7-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索