Suppr超能文献

GUPNet++:用于单目3D目标检测的几何不确定性传播网络

GUPNet++: Geometry Uncertainty Propagation Network for Monocular 3D Object Detection.

作者信息

Lu Yan, Ma Xinzhu, Yang Lei, Zhang Tianzhu, Liu Yating, Chu Qi, He Tong, Li Yonghui, Ouyang Wanli

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 Feb;47(2):900-915. doi: 10.1109/TPAMI.2024.3475583. Epub 2025 Jan 9.

Abstract

Geometry plays a significant role in monocular 3D object detection. It can be used to estimate object depth by using the perspective projection between object's physical size and 2D projection in the image plane, which can introduce mathematical priors into deep models. However, this projection process also introduces error amplification, where the error of the estimated height is amplified and reflected into the projected depth. It leads to unreliable depth inferences and also impairs training stability. To tackle this problem, we propose a novel Geometry Uncertainty Propagation Network (GUPNet++) by modeling geometry projection in a probabilistic manner. This ensures depth predictions are well-bounded and associated with a reasonable uncertainty. The significance of introducing such geometric uncertainty is two-fold: (1). It models the uncertainty propagation relationship of the geometry projection during training, improving the stability and efficiency of the end-to-end model learning. (2). It can be derived to a highly reliable confidence to indicate the quality of the 3D detection result, enabling more reliable detection inference. Experiments show that the proposed approach not only obtains (state-of-the-art) SOTA performance in image-based monocular 3D detection but also demonstrates superiority in efficacy with a simplified framework. The code and model will be released at https://github.com/SuperMHP/GUPNet_Plus.

摘要

几何在单目3D目标检测中起着重要作用。它可以通过利用物体的物理尺寸与图像平面中二维投影之间的透视投影来估计物体深度,这可以将数学先验引入深度模型。然而,这种投影过程也会引入误差放大,即估计高度的误差被放大并反映到投影深度中。这导致深度推断不可靠,也损害了训练稳定性。为了解决这个问题,我们通过以概率方式对几何投影进行建模,提出了一种新颖的几何不确定性传播网络(GUPNet++)。这确保了深度预测具有良好的边界,并与合理的不确定性相关联。引入这种几何不确定性的意义有两个方面:(1)。它对训练期间几何投影的不确定性传播关系进行建模,提高了端到端模型学习的稳定性和效率。(2)。它可以导出到一个高度可靠的置信度,以指示3D检测结果的质量,从而实现更可靠的检测推断。实验表明,所提出的方法不仅在基于图像的单目3D检测中获得了(当前最优的)SOTA性能,而且在简化框架下的有效性方面也表现出优势。代码和模型将在https://github.com/SuperMHP/GUPNet_Plus上发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验