Suppr超能文献

顶点不够:通过平面内和平面间约束进行单目 3D 目标检测。

Vertex points are not enough: Monocular 3D object detection via intra- and inter-plane constraints.

机构信息

National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China; Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, Wuhan 430072, China; Collaborative Innovation Center of Geospatial Technology, Wuhan 430072, China.

National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China; Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, Wuhan 430072, China; Collaborative Innovation Center of Geospatial Technology, Wuhan 430072, China.

出版信息

Neural Netw. 2023 May;162:350-358. doi: 10.1016/j.neunet.2023.02.038. Epub 2023 Mar 2.

Abstract

Existed methods for 3D object detection in monocular images focus mainly on the class of rigid bodies like cars, while more challenging detection like the cyclist is less studied. Therefore, we propose a novel 3D monocular object detection method to improve the accuracy of detection objects with large differences in deformation by introducing the geometric constraints of the object 3D bounding box plane. Considering the map relationship of projection plane and the keypoint, we firstly introduce the geometric constraints of the object 3D bounding box plane, adding the intra-plane constraint while regressing the position and offset of the keypoint itself, so that the position and offset error of the keypoint are always within the error range of the projection plane. For the inter-plane geometry relationship of the 3D bounding box, the prior knowledge is incorporated to optimize the keypoint regression allowing for improved the accuracy of depth location prediction. Experimental results show that the proposed method outperforms some other state-of-the-art methods on cyclist class, and obtains competitive results in the field of real-time monocular detection.

摘要

现有的单目图像 3D 目标检测方法主要集中在刚体类别上,如汽车,而更具挑战性的检测,如自行车,则研究较少。因此,我们提出了一种新的 3D 单目目标检测方法,通过引入物体 3D 边界框平面的几何约束,提高对变形差异较大的物体的检测精度。考虑到投影平面和关键点之间的映射关系,我们首先引入了物体 3D 边界框平面的几何约束,在回归关键点自身的位置和偏移量的同时添加了平面内约束,从而使关键点的位置和偏移量误差始终在投影平面的误差范围内。对于 3D 边界框的平面间几何关系,我们结合了先验知识来优化关键点回归,从而提高深度位置预测的准确性。实验结果表明,该方法在自行车类上优于其他一些最先进的方法,并在实时单目检测领域获得了有竞争力的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验