Huang Lei, Gao Xianshu, Li Yue, Lyu Feng, Gao Yan, Bai Yun, Ma Mingwei, Liu Siwei, Chen Jiayan, Ren Xueying, Shang Shiyu, Ding Xuanfeng
Department of Radiation Oncology, Peking University First Hospital, Beijing, China.
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
J Appl Clin Med Phys. 2025 Jan;26(1):e14546. doi: 10.1002/acm2.14546. Epub 2024 Oct 7.
Partial stereotactic ablative boost radiotherapy (P-SABR) effectively treats bulky lung cancer; however, the planning process for P-SABR requires repeated dose calculations. To improve planning efficiency, we proposed a novel deep learning method that utilizes limited data to accurately predict the three-dimensional (3D) dose distribution of the P-SABR plan for bulky lung cancer.
We utilized data on 74 patients diagnosed with bulky lung cancer who received P-SABR treatment. The patient dataset was randomly divided into a training set (51 plans) with augmentation, validation set (7 plans), and testing set (16 plans). We devised a 3D multi-scale dilated network (MD-Net) and integrated a scale-balanced structure loss into the loss function. A comparative analysis with a classical network and other advanced networks with multi-scale analysis capabilities and other loss functions was conducted based on the dose distributions in terms of the axial view, average dose scores (ADSs), and average absolute differences of dosimetric indices (AADDIs). Finally, we analyzed the predicted dosimetric indices against the ground-truth values and compared the predicted dose-volume histogram (DVH) with the ground-truth DVH.
Our proposed dose prediction method for P-SABR plans for bulky lung cancer demonstrated strong performance, exhibiting a significant improvement in predicting multiple indicators of regions of interest (ROIs), particularly the gross target volume (GTV). Our network demonstrated increased accuracy in most dosimetric indices and dose scores in different ROIs. The proposed loss function significantly enhanced the predictive performance of the dosimetric indices. The predicted dosimetric indices and DVHs were equivalent to the ground-truth values.
Our study presents an effective model based on limited datasets, and it exhibits high accuracy in the dose prediction of P-SABR plans for bulky lung cancer. This method has potential as an automated tool for P-SABR planning and can help optimize treatments and improve planning efficiency.
部分立体定向消融增敏放疗(P-SABR)可有效治疗体积较大的肺癌;然而,P-SABR的计划制定过程需要反复进行剂量计算。为提高计划制定效率,我们提出了一种新颖的深度学习方法,该方法利用有限的数据准确预测体积较大肺癌的P-SABR计划的三维(3D)剂量分布。
我们使用了74例接受P-SABR治疗的体积较大肺癌患者的数据。将患者数据集随机分为增强后的训练集(51个计划)、验证集(7个计划)和测试集(16个计划)。我们设计了一个3D多尺度扩张网络(MD-Net),并将尺度平衡结构损失整合到损失函数中。基于轴向视图的剂量分布、平均剂量得分(ADS)和剂量学指标的平均绝对差异(AADDI),对经典网络以及具有多尺度分析能力和其他损失函数的其他先进网络进行了对比分析。最后,我们将预测的剂量学指标与真实值进行了分析,并将预测的剂量体积直方图(DVH)与真实的DVH进行了比较。
我们提出的针对体积较大肺癌的P-SABR计划剂量预测方法表现出强大的性能,在预测感兴趣区域(ROI)的多个指标,尤其是大体肿瘤体积(GTV)方面有显著改善。我们的网络在不同ROI的大多数剂量学指标和剂量得分上显示出更高的准确性。所提出的损失函数显著提高了剂量学指标的预测性能。预测的剂量学指标和DVH与真实值相当。
我们的研究提出了一个基于有限数据集的有效模型,在体积较大肺癌的P-SABR计划剂量预测中表现出高精度。该方法有潜力作为P-SABR计划制定的自动化工具,有助于优化治疗并提高计划制定效率。