Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Département de génie civil et génie du bâtiment, Faculté de génie, Université de Sherbrooke, Sherbrooke J1K 2R1 Québec, Canada.
Environ Sci Technol. 2024 Oct 22;58(42):18788-18799. doi: 10.1021/acs.est.4c02797. Epub 2024 Oct 7.
With a growing emphasis on indoor air quality (IAQ) in educational environments, CO monitoring in classrooms has become commonplace. CO data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO emission rates, and air mixing. This research underscores the potential of leveraging CO data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.
随着人们越来越重视教育环境中的室内空气质量 (IAQ),在教室中监测 CO 已变得很常见。根据质量平衡原理,CO 数据可用于估算室外空气更换率 (ACH),进而与人类健康、表现和建筑能耗联系起来。本研究使用了一种新颖的机器学习方法,可自动将 CO 浓度时间序列数据分割为建立、平衡和衰减期,然后使用相应的 CO 质量平衡方程估算教室 ACH。该方法应用于两所机械通风 K-6 学校的 40 间教室,每天每间教室可生成多达 10 个 ACH 估计值。与研究期间建筑自动化系统报告的机械通风率为 100%的室外空气计算得出的 ACH 进行比较,衰减和建立方法略有低估,而平衡方法则产生了更接近的估计值。这些差异可能归因于人员、活动、CO 排放率和空气混合的不确定性。这项研究强调了利用 CO 数据进行更全面的室内空气质量评估的潜力,并突出了在实际环境中准确估算 ACH 所面临的挑战。