Taylor Beatrice, Bocchetta Martina, Shand Cameron, Todd Emily G, Chokesuwattanaskul Anthipa, Crutch Sebastian J, Warren Jason D, Rohrer Jonathan D, Hardy Chris J D, Oxtoby Neil P
Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK.
Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
Brain. 2025 Mar 6;148(3):955-968. doi: 10.1093/brain/awae314.
The primary progressive aphasias are rare, language-led dementias, with three main variants: semantic, non-fluent/agrammatic and logopenic. Although the semantic variant has a clear neuroanatomical profile, the non-fluent/agrammatic and logopenic variants are difficult to discriminate from neuroimaging. Previous phenotype-driven studies have characterized neuroanatomical profiles of each variant on MRI. In this work, we used a machine learning algorithm known as SuStaIn to discover data-driven neuroanatomical 'subtype' progression profiles and performed an in-depth subtype-phenotype analysis to characterize the heterogeneity of primary progressive aphasia. Our study included 270 participants with primary progressive aphasia seen for research in the UCL Queen Square Institute of Neurology Dementia Research Centre, with follow-up scans available for 137 participants. This dataset included individuals diagnosed with all three main variants (semantic, n = 94; non-fluent/agrammatic, n = 109; logopenic, n = 51) and individuals with unspecified primary progressive aphasia (n = 16). A dataset of 66 patients (semantic, n = 37; non-fluent/agrammatic, n = 29) from the ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) Research Study was used to validate our results. MRI scans were segmented, and SuStaIn was used on 19 regions of interest to identify neuroanatomical profiles independent of the diagnosis. We assessed the assignment of subtypes and stages, in addition to their longitudinal consistency. We discovered four neuroanatomical subtypes of primary progressive aphasia, labelled S1 (left temporal), S2 (insula), S3 (temporoparietal) and S4 (frontoparietal), exhibiting robustness to statistical scrutiny. S1 was correlated strongly with the semantic variant, whereas S2, S3 and S4 showed mixed associations with the logopenic and non-fluent/agrammatic variants. Notably, S3 displayed a neuroanatomical signature akin to a logopenic-only signature, yet a significant proportion of logopenic cases were allocated to S2. The non-fluent/agrammatic variant demonstrated diverse associations with S2, S3 and S4. No clear relationship emerged between any of the neuroanatomical subtypes and the unspecified cases. At first follow-up, subtype assignment was stable for 84% of patients, and stage assignment was stable for 91.9% of patients. We partially validated our findings in the ALLFTD dataset, finding comparable qualitative patterns. Our study, leveraging machine learning on a large primary progressive aphasia dataset, delineated four distinct neuroanatomical patterns. Our findings suggest that separable spatiotemporal neuroanatomical phenotypes do exist within the primary progressive aphasia spectrum, but that these are noisy, particularly for the non-fluent/agrammatic non-fluent/agrammatic and logopenic variants. Furthermore, these phenotypes do not always conform to standard formulations of clinico-anatomical correlation. Understanding the multifaceted profiles of the disease, encompassing neuroanatomical, molecular, clinical and cognitive dimensions, has potential implications for clinical decision support.
原发性进行性失语症是罕见的、以语言功能为主导的痴呆症,主要有三种变体:语义性、非流利性/语法缺失性和音韵性。虽然语义性变体有明确的神经解剖学特征,但非流利性/语法缺失性和音韵性变体很难通过神经影像学进行区分。以往基于表型的研究已经在磁共振成像(MRI)上描绘了每种变体的神经解剖学特征。在这项研究中,我们使用一种名为SuStaIn的机器学习算法来发现数据驱动的神经解剖学“亚型”进展特征,并进行了深入的亚型-表型分析,以刻画原发性进行性失语症的异质性。我们的研究纳入了270名在伦敦大学学院女王广场神经病学研究所痴呆症研究中心接受研究的原发性进行性失语症患者,其中137名患者有随访扫描数据。该数据集包括被诊断为所有三种主要变体的个体(语义性,n = 94;非流利性/语法缺失性,n = 109;音韵性,n = 51)以及原发性进行性失语症类型未明确的个体(n = 16)。来自ARTFL LEFFTDS纵向额颞叶变性(ALLFTD)研究的66名患者(语义性,n = 37;非流利性/语法缺失性,n = 29)的数据集用于验证我们的结果。对MRI扫描进行了分割,并在19个感兴趣区域使用SuStaIn来识别独立于诊断的神经解剖学特征。我们评估了亚型和阶段的分配情况以及它们的纵向一致性。我们发现了原发性进行性失语症的四种神经解剖学亚型,分别标记为S1(左颞叶)、S2(脑岛)、S3(颞顶叶)和S4(额顶叶),这些亚型在统计检验中表现出稳健性。S1与语义性变体密切相关,而S2、S3和S4与音韵性和非流利性/语法缺失性变体呈现出混合关联。值得注意的是,S3显示出一种类似于仅音韵性特征的神经解剖学特征,但相当一部分音韵性病例被归为S2。非流利性/语法缺失性变体与S2、S3和S4表现出多样的关联。任何神经解剖学亚型与类型未明确的病例之间均未出现明确的关系。在首次随访时,84%的患者亚型分配稳定,91.9%的患者阶段分配稳定。我们在ALLFTD数据集中部分验证了我们的发现,发现了类似的定性模式。我们的研究通过对一个大型原发性进行性失语症数据集运用机器学习,描绘了四种不同的神经解剖学模式。我们的研究结果表明,在原发性进行性失语症谱系中确实存在可分离的时空神经解剖学表型,但这些表型存在噪声,特别是对于非流利性/语法缺失性和音韵性变体。此外,这些表型并不总是符合临床-解剖学相关性的标准表述。了解该疾病的多方面特征,包括神经解剖学、分子、临床和认知维度,对临床决策支持具有潜在意义。